Head movements for behavior recognition from real time video based on deep learning ConvNet transfer learning

Author(s):  
T. Kujani ◽  
V. Dhilip Kumar
Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


2021 ◽  
Vol 13 (3) ◽  
pp. 809-820
Author(s):  
V. Sowmya ◽  
R. Radha

Vehicle detection and recognition require demanding advanced computational intelligence and resources in a real-time traffic surveillance system for effective traffic management of all possible contingencies. One of the focus areas of deep intelligent systems is to facilitate vehicle detection and recognition techniques for robust traffic management of heavy vehicles. The following are such sophisticated mechanisms: Support Vector Machine (SVM), Convolutional Neural Networks (CNN), Regional Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) model, etcetera. Accordingly, it is pivotal to choose the precise algorithm for vehicle detection and recognition, which also addresses the real-time environment. In this study, a comparison of deep learning algorithms, such as the Faster R-CNN, YOLOv2, YOLOv3, and YOLOv4, are focused on diverse aspects of the features. Two entities for transport heavy vehicles, the buses and trucks, constitute detection and recognition elements in this proposed work. The mechanics of data augmentation and transfer-learning is implemented in the model; to build, execute, train, and test for detection and recognition to avoid over-fitting and improve speed and accuracy. Extensive empirical evaluation is conducted on two standard datasets such as COCO and PASCAL VOC 2007. Finally, comparative results and analyses are presented based on real-time.


2021 ◽  
Author(s):  
Gaurav Chachra ◽  
Qingkai Kong ◽  
Jim Huang ◽  
Srujay Korlakunta ◽  
Jennifer Grannen ◽  
...  

Abstract After significant earthquakes, we can see images posted on social media platforms by individuals and media agencies owing to the mass usage of smartphones these days. These images can be utilized to provide information about the shaking damage in the earthquake region both to the public and research community, and potentially to guide rescue work. This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter and thus identify the particular user posts containing such images. Using transfer learning and ~6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene. The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey. Furthermore, to better understand how the model makes decisions, we also implemented the Grad-CAM method to visualize the important locations on the images that facilitate the decision.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Li Wang ◽  
Lijun Zhao ◽  
Guanglei Huo ◽  
Ruifeng Li ◽  
Zhenghua Hou ◽  
...  

In order to improve the environmental perception ability of mobile robots during semantic navigation, a three-layer perception framework based on transfer learning is proposed, including a place recognition model, a rotation region recognition model, and a “side” recognition model. The first model is used to recognize different regions in rooms and corridors, the second one is used to determine where the robot should be rotated, and the third one is used to decide the walking side of corridors or aisles in the room. Furthermore, the “side” recognition model can also correct the motion of robots in real time, according to which accurate arrival to the specific target is guaranteed. Moreover, semantic navigation is accomplished using only one sensor (a camera). Several experiments are conducted in a real indoor environment, demonstrating the effectiveness and robustness of the proposed perception framework.


2021 ◽  
Vol 309 ◽  
pp. 01167
Author(s):  
G. Ramesh ◽  
J. Praveen

An electric vehicle with autonomous driving is a possibility provided technology innovations in multi-disciplinary approach. Electric vehicles leverage environmental conditions and are much desired in the contemporary world. Another great possibility is to strive for making the vehicle to drive itself (autonomous driving) provided instructions. When the two are combined, it leads to a different dimension of environmental safety and technology driven driving that has many pros and cons as well. It is still in its infancy and there is much research to be carried out. In this context, this paper is aimed at building an Artificial Intelligence (AI) framework that has dual goal of “monitoring and regulating power usage” and facilitating autonomous driving with technology-driven and real time knowledge required. A methodology is proposed with multiple deep learning methods. For instance, deep learning is used for localization of vehicle, path planning at high level and path planning for low level. Apart from this, there is reinforcement learning and transfer learning to speed up the process of gaining real time business intelligence. To facilitate real time knowledge discovery from given scenarios, both edge and cloud resources are appropriately exploited to benefit the vehicle as driving safety is given paramount importance. There is power management module where modular Recurrent Neural Network is used. Another module known as speed control is used to have real time control over the speed of the vehicle. The usage of AI framework makes the electronic and autonomous vehicles realize unprecedented possibilities in power management and safe autonomous driving. Key words: Artificial Intelligence Autonomous Driving Recurrent Neural Network Transfer Learning


Author(s):  
Rotimi-Williams Bello ◽  
Ahmad Sufril Azlan Mohamed ◽  
Abdullah Zawawi Talib ◽  
Salisu Sani ◽  
Mohd Nadhir Ab Wahab

Background: One important indicator for the wellbeing status of livestock is their daily behavior. More often than not, daily behavior recognition involves detecting the heads or body gestures of the livestock using conventional methods or tools. To prevail over such limitations, an effective approach using deep learning is proposed in this study for cattle behavior recognition. Methods: The approach for detecting the behavior of individual cows was designed in terms of their eating, drinking, active, and inactive behaviors captured from video sequences and based on the investigation of the attributes and practicality of the state-of-the-art deep learning methods. Result: Among the four models employed, Mask R-CNN achieved average recognition accuracies of 93.34%, 88.03%, 93.51% and 93.38% for eating, drinking, active and inactive behaviors. This implied that Mask R-CNN achieved higher cow detection accuracy and speed than the remaining models with 20 fps, making the proposed approach competes favorably well with other approaches and suitable for behavior recognition of group-ranched cattle in real-time.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Sign in / Sign up

Export Citation Format

Share Document