Terrestrial laser scanning monitoring and spatial analysis of ground disaster in Gaoyang coal mine in Shanxi, China: a technical note

2017 ◽  
Vol 76 (7) ◽  
Author(s):  
Xugang Lian ◽  
Haifeng Hu
2017 ◽  
Vol 64 (2) ◽  
pp. 67-78
Author(s):  
Janez Rošer

AbstractRecently, a new underground pumping station was constructed 41.5 m below sea level and equipped, which has now become the main underground pumping station of the Velenje Coal Mine (VCM). In this study, use of terrestrial laser scanning (TLS) to acquire the 3D data of the engine room of the underground pumping station is presented. TLS is an advanced technique in spatial information data acquisition, which allows the equipment in the underground pumping station to be digitally captured with unprecedented resolution and accuracy. Integration with metric imagery allows 3D photorealistic models to be created for interpretation and visualisation. The final result shows the actual 3D image of the object recorded with a relative accuracy of a few millimetres. TLS is ideal for capturing the original state before construction commences and the final state after its completion, as well as for both observation of surface changes and detection of deformations. When we have an accurate 3D model of each component in the engine room of the underground pumping station, any maintenance, future upgrades, or modifications can be made with reference to the original state.


Author(s):  
Stéphane Jaillet ◽  
Jean-Jacques Delannoy ◽  
Julien Monney ◽  
Benjamin Sadier

Recent developments in 3-D technology have resulted in considerable improvements in the recording and study of rock art sites in various parts of the world. These technologies make it possible to digitally document sites at nested scales, from detailed analyses of individual motifs on rock surfaces to entire sites in their broader landscape settings. Because of the increased precision that 3-D recordings bring, the results can be used to study the art and site settings, and to monitor and guide conservation strategies. This chapter outlines key principles underlying the production of 3-D imagery and how high-resolution 3-D models can benefit the spatial analysis of sites and landscapes and the interrelationship of features therein. The authors focus on terrestrial laser scanning (TLS) and photogrammetry, distinctive approaches that are often applied together for a richer outcome.


2018 ◽  
Vol 36 ◽  
pp. 02009 ◽  
Author(s):  
Dariusz Szwarkowski ◽  
Magdalena Moskal

The article discusses the use of terrestrial laser scanning to assess deformations in mining areas. Using the terrestrial laser scanning Riegl VZ-400, control measurements within the historical location of the underground coal mine in Zabrze were made. Two laser scanning measurements were taken over the course of one year. The research made it possible to determine changes in surface deformation on the shallowly located mining excavations. Differences in the terrain may be due to subsidence associated with the influence of underground mining and pose a threat to the adjacent road infrastructure and structures.


2021 ◽  
Vol 7 (1) ◽  
pp. 51-83
Author(s):  
Davide Tanasi ◽  
Stephan Hassam ◽  
Kaitlyn Kingsland ◽  
Paolo Trapani ◽  
Matthew King ◽  
...  

Abstract The archaeological site of the Domus Romana in Rabat, Malta was excavated almost 100 years ago yielding artefacts from the various phases of the site. The Melite Civitas Romana project was designed to investigate the domus, which may have been the home of a Roman Senator, and its many phases of use. Pending planned archaeological excavations designed to investigate the various phases of the site, a team from the Institute for Digital Exploration from the University of South Florida carried out a digitization campaign in the summer of 2019 using terrestrial laser scanning and aerial digital photogrammetry to document the current state of the site to provide a baseline of documentation and plan the coming excavations. In parallel, structured light scanning and photogrammetry were used to digitize 128 artefacts in the museum of the Domus Romana to aid in off-site research and create a virtual museum platform for global dissemination.


2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


2021 ◽  
Vol 255 ◽  
pp. 112274
Author(s):  
S. Junttila ◽  
T. Hölttä ◽  
E. Puttonen ◽  
M. Katoh ◽  
M. Vastaranta ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


Sign in / Sign up

Export Citation Format

Share Document