Study on the distribution characteristics of stress deviator in the surrounding rock when mining closely spaced coal seams

2021 ◽  
Vol 80 (17) ◽  
Author(s):  
Renliang Shan ◽  
Zhaolong Li ◽  
Chunhe Wang ◽  
Yonghui Wei ◽  
Xiao Tong ◽  
...  
2021 ◽  
Vol 11 (9) ◽  
pp. 4125
Author(s):  
Zhe Xiang ◽  
Nong Zhang ◽  
Zhengzheng Xie ◽  
Feng Guo ◽  
Chenghao Zhang

The higher strength of a hard roof leads to higher coal pressure during coal mining, especially under extra-thick coal seam conditions. This study addresses the hard roof control problem for extra-thick coal seams using the air return roadway 4106 (AR 4106) of the Wenjiapo Coal Mine as a case study. A new surrounding rock control strategy is proposed, which mainly includes 44 m deep-hole pre-splitting blasting for stress releasing and flexible 4-m-long bolt for roof supporting. Based on the new support scheme, field tests were performed. The results show that roadway support failure in traditional scenarios is caused by insufficient bolt length and extensive rotary subsidence of the long cantilever beam of the hard roof. In the new proposed scheme, flexible 4-m-long bolts are shown to effectively restrain the initial expansion deformation of the top coal. The deflection of the rock beam anchored by the roof foundation are improved. Deep-hole pre-splitting blasting effectively reduces the cantilever distance of the “block B” of the voussoir beam structure. The stress environment of the roadway surrounding rock is optimized and anchorage structure damage is inhibited. The results provide insights regarding the safe control of roadway roofs under extra-thick coal seam conditions.


2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qiang Pan ◽  
Jichun Zhang ◽  
Shuangying Zheng

The damage range of surrounding rock has an important influence on optimization of blasting parameters. This study, based on the vibration attenuation law near the blasting source and the characteristics of the load acting on the wall of the smooth blasting hole, derives the distribution formulas of the damage range along the borehole during the expansion and quasistatic processes of detonation gas, respectively. More importantly, the quantitative relationship between the damage range and the charge weight of the single borehole is established. The experimental data are used to verify the correctness of the theoretical formulas. The results show that the damage range during the expansion process of detonation gas presents a continuous saddle-shaped distribution along the borehole and the maximum damage range is near the charge segment. The damage range during the quasistatic process of detonation gas is uniformly distributed along the borehole and can be more conservatively used to the practical prediction after corrected. The theoretical formulas are applicable to the perimeter hole with the radial and axial decoupled charge structure, which can provide a theoretical support for controlling the damage range of surrounding rock according to the charge weight.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Liu Chen ◽  
Jiangbo Li ◽  
Fei Han ◽  
Yu Zhang ◽  
Lang Liu ◽  
...  

With the development of society, the economy, and national security, the exploitation of deep underground space has become an inevitable trend in human society. However, high-temperature-related problems occur in deep underground spaces. The high temperature of deep underground space is essentially influenced by the thermal characteristics of the surrounding rock. According to the mathematical model of heat transfer of the surrounding rock in deep underground space, similar criteria numbers are established. Experiments were carried out to investigate the thermal characteristics of the surrounding rock. The distribution characteristics of temperature were determined by the Fourier number (Fo) and Biot number (Bi), and the effects of heat transfer time, airflow velocities, and air temperature and radial displacement on the distribution characteristics of temperature were studied. The results indicate that the surrounding rock temperature decreases with long heat transfer times, high airflow velocities, and low air temperatures.


2012 ◽  
Vol 524-527 ◽  
pp. 613-617
Author(s):  
Jun Hua Xue ◽  
Sheng Xue

To address the issue of high gas emissions in mining gassy coal seams in underground coal mines, the concept of a three-entry panel layout with a retained goaf-edge gateroad and a “Y” type ventilation system is introduced in this paper. With the layout and ventilation system, distribution characteristics of methane concentration in the panel goaf is analyzed, technologies of gas drainage with boreholes drilled from the retained goaf-edge gateroad and into stress-relieved overlying and underlying seams are described, and an application case of such layout in a coal mine is also presented in this paper.


2021 ◽  
Vol 257 ◽  
pp. 03024
Author(s):  
Zhonghua Wang

In order to explore the distribution characteristics of the overlying rock stress field in the floor roadway at different locations, FLAC3D software was used to simulate and analyze the surrounding rock directly above the floor roadway and the surrounding rock within 15m on both sides of the floor roadway when the distance between the floor roadway and the coal roadway and the horizontal distance were changed. The stress field distribution characteristics are obtained, and the stress field distribution characteristics of different areas directly above and on both sides of the floor roadway are obtained, which provides a theoretical basis for the location selection and support of the floor roadway.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Honglin Liu ◽  
Chen Xu ◽  
Hongzhi Wang ◽  
Guodong Li ◽  
Sanyang Fan

There are a large amount of steeply dipping coal seams deposited in China, the safe and effective extraction of which are the challenge for coal operators due to the complicated geological characteristics, in particular, when the underground roadway is excavated in the steeply dipping coal seams with limited seam distance. The Universal Distinct Element Code (UDEC) was adopted in the present research to explore the stress distribution of surrounding rock of the roadway. Based on the numerical simulation, the damage coefficient was proposed and then used to classify the roof conditions into four groups. After that, the asymmetric support technique was proposed and put into practical applications. It is indicated that the stress concentration on the floor is the main feature of the extraction of steeply dipping coal seams. Moreover, the distributions of the maximum vertical stress and horizontal stress which are much different from each other mainly attributed to the effect of the large dip angle. This research also verified the feasibility of using the asymmetric and partition support technique to maintain the integrity of the surrounding rock, as from the case study conducted at the 12032 longwall coal face of Zhongwei coal mine.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoming Sun ◽  
Li Gan ◽  
Zhao Chengwei ◽  
Tang Jianquan ◽  
He Manchao ◽  
...  

Gob-side entry retaining through precut overhanging hard roof (GERPOHR) method is one of the commonly used methods for nonpillar mining. However, feasibility studies of controlling rockburst by this method are few. Rockburst occurs in hard thick strata with a higher probability, larger scale, and higher risk. To better understand the GERPOHR method is beneficial for rockburst mitigation. In this paper, the design of GERPOHR was first introduced. And the layout of the working face was optimized. Then, based on the numerical simulation, the stress and displacement distribution characteristics were compared under the condition of conventional mining and GERPOHR method. The research shows that the intervals of main roof weighting could be decreased through the precut overhanging hard roof method. And the peak value of abutment pressure decreased. Meanwhile, the energy accumulation and the stress fluctuation could be alleviated in roadway surrounding rock.


Sign in / Sign up

Export Citation Format

Share Document