Utilizing Food Waste Product (Date Tree Seeds) to Enhance the Filtration Characteristics in Water-Based Drilling Fluid System: A Comparative Study

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Abo Taleb T. Al-Hameedi ◽  
Husam H. Alkinani ◽  
Mohammed M. Alkhamis ◽  
Shari Dunn-Norman

Abstract Practically, to regulate filtration characteristics of drilling fluid, non-biodegradable materials used commonly have a high cost with side effects on personnel safety and the environment. Hence, eco-friendly additives are needed as an alternative to replace or at least support the commonly used filtration control agents. This experimental investigation examines the possibility of using date tree seeds’ powder (DTSP), as a new eco-friendly fluid loss agent. Under surface and sub-surface conditions (fresh and aged conditions), experiments were executed utilizing low-temperature and low-pressure (LTLP) and high-temperature and high-pressure (HTHP) American Petroleum Institute (API) filter press to comprehend the influence of DTSP on the seepage loss characteristics. The findings were compared with a commonly utilized chemical additive to regulate filtration characteristics of drilling fluid (low viscosity sodium carboxymethyl cellulose (CMC-LV)). Two concentrations of DTSP and CMC-LV were added separately to a reference fluid (RF) to understand the effect of concentration variations on filtration properties. The findings revealed that both DTSP and CMC-LV significantly improved the filtrate and the filter cake when comparing them with the RF under fresh and aged conditions. The findings for fresh conditions also showed that LTLP filtration measurements for CMC-LV additives had almost similar performance as DTSP additives, while HTHP filtration measurements exhibited that the two concentrations of DTSP additives were marginally better than those of CMC-LV additives. For aged conditions, CMC-LV additives were relatively more efficient than DTSP additives for LTLP filtration control experiments. However, DTSP additives were more efficient in improving the filtration characteristics as compared to CMC-LV additives for HTHP filtration control experiments. These results are in aid of shifting the oil and gas industry from using conventional harmful additives to using unconventional eco-friendly additives. This also helps in transforming unwanted food wastes into valuable commercial products, which can revolutionize the domestic and international industries and create new job opportunities, hence minimizing the total cost of drilling fluid and the wastes disposed to the environment.

2021 ◽  
Vol 11 (5) ◽  
pp. 2157-2178
Author(s):  
David Oluwasegun Afolayan ◽  
Adelana Rasak Adetunji ◽  
Azikiwe Peter Onwualu ◽  
Oghenerume Ogolo ◽  
Richard Kwasi Amankwah

AbstractSuccessful drilling operations are dependent on the properties of the drilling fluid used to drill wells. Barite is used as a weighting agent during the preparation of drilling fluid. Over the years, oil and gas industry in Nigeria has been depending mainly on imported barite for drilling operations, whereas the country has huge deposits of barite. There is the need to assess the properties of the locally sourced barite for their suitability in drilling fluid formulation. This study presents the local processing methods of barite and examines the crude and on-the-site processed barite’s physio-chemical properties. These parameters were compared with American Petroleum Institute and Department of Petroleum Resources standards. XRD results show that on-the-site beneficiated barite has 87.79% BaSO4, 6.66% silica, 0.03% total soluble salt, 1.39% Fe2O3, and 1.603% heavy metals. Chemical analysis indicated that the pH, moisture content, metallic content such as Ca, Pb, Zn, Mg, Cu, and Cd minerals, and extractable carbonates were within the standard specified for usage as a drilling fluid weighting agent. The analysed crude barite samples were basic, within the pH of 8.3 and 8.6. Locally processed barite has lower Fe, Pb, Cd, and Cu content compared to industrially accepted barite. The specific gravity increased from 4.02 ± 0.07 to 4.15 ± 0.13, and the hardness reduced potentially from 5 Mohr to 3.5 Mohr on the hardness scale. The amount of impurities was sufficiently low, and the specific gravity of the samples improved to meet the needs of any drilling operation and compare favourably with industrially accepted barite.


2016 ◽  
Vol 16 (2) ◽  
pp. 57-67
Author(s):  
M. Kmieć ◽  
B. Karpiński ◽  
M. Szkodo

Abstract The P110 steel specimens were subjected to ultrasonic cavitation erosion in different compositions of drilling muds and surfactant additive. The test procedure was based on ASTM-G-32 standard recommendations. API 5CT-P110 steel is used for pipes in oil and gas industry. The harsh environment and high velocity of flows poses corrosive and erosive threat on materials used there. The composition of drilling fluid influences its rheological properties and thus intensity of cavitation erosion. The erosion curves based on weight loss were measured.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1950
Author(s):  
Monika Gajec ◽  
Ewa Kukulska-Zając ◽  
Anna Król

Significant amounts of produced water, spent drilling fluid, and drill cuttings, which differ in composition and characteristics in each drilling operation, are generated in the oil and gas industry. Moreover, the oil and gas industry faces many technological development challenges to guarantee a safe and clean environment and to meet strict environmental standards in the field of processing and disposal of drilling waste. Due to increasing application of nanomaterials in the oil and gas industry, drilling wastes may also contain nanometer-scale materials. It is therefore necessary to characterize drilling waste in terms of nanomaterial content and to optimize effective methods for their determination, including a key separation step. The purpose of this study is to select the appropriate method of separation and pre-concentration of silver nanoparticles (AgNPs) from drilling wastewater samples and to determine their size distribution along with the state of aggregation using single-particle inductively coupled plasma mass spectrometry (spICP-MS). Two AgNP separation methods were compared: centrifugation and cloud point extraction. The first known use of spICP-MS for drilling waste matrices following mentioned separation methods is presented.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


Author(s):  
E.A. Flik ◽  
◽  
Y.E. Kolodyazhnaya

The article assesses the environmental safety of drilling fluids that are currently widely used in the oil and gas industry. It shows active development of water-based drilling fluid systems using xanthan biopolymer.


2019 ◽  
Vol 20 (1) ◽  
pp. 248
Author(s):  
Nor Adzwa Binti Rosli ◽  
Wan Asma Ibrahim ◽  
Zulkafli Hassan ◽  
Azizul Helmi Bin Sofian

In this study, some approaches have been proposed to establish an alternative and option of brand-new compounds by using green sources that can minimize the environmental threat in the engineering application industry. Tannin, a chemical component extracted from plant origin, has the potential to bind with proteins and other polymers. The description of tannin can be amplified to cover a complete mass of constituents which give typical phenolic reactions, and hence, it has the properties to interact with the aqueous solution. The potential of tannin to associate allows its usability in the oil and gas industry. The aim of this review in this particular context will be emphasized the use of tannin in the implementation of drilling fluid, mercury removal, wastewater treatment, and corrosion inhibitor.


Algorithms ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 119 ◽  
Author(s):  
Hamidreza Hasheminasab ◽  
Sarfaraz Hashemkhani Zolfani ◽  
Mahdi Bitarafan ◽  
Prasenjit Chatterjee ◽  
Alireza Abhaji Ezabadi

Blast-resistant buildings are mainly used to protect main instruments, controllers, expensive equipment, and people from explosion waves. Oil and gas industry projects almost always include blast-resistant buildings. For instance, based on a hazard identification (HAZID) and hazard and operability (HAZOP) analysis of a plant, control rooms and substations are sometimes designed to withstand an external free air explosion that generates blast over pressure. In this regard, a building façade is considered to be the first barrier of resistance against explosion waves, and therefore a building façade has an important role in reducing a building’s vulnerability and human casualties. In case of a lack of enough resistance, explosion waves enter a building and bring about irreparable damage to the building. Consequently, it seems important to study and evaluate various materials used in a façade against the consequences of an explosion. This study tried to make a comparison between different types of building facades against explosion waves. The materials used in a building play a key role in the vulnerability of a building. In this research, a literature review and the fuzzy Delphi method were applied to find the most critical criteria, and then a fuzzy evaluation based on the distance from the average solution (EDAS) was applied in order to assess various materials used in building facades from the perspective of resiliency. A questionnaire was presented to measure effective indices in order to receive experts’ ideas. Finally, by implementing this methodology in a case study, it was concluded that a stone façade performs much better against explosions.


2016 ◽  
Vol 835 ◽  
pp. 15-19 ◽  
Author(s):  
Yu Xiu An ◽  
Guan Cheng Jiang ◽  
You Rong Qi ◽  
Qing Ying Ge

In this paper, the nano flexible polymer was synthesized and the plugging property of the polymer in the drilling fluid was studied. The characterization and properties of nano flexible polymer were invested by Particle Size Analyzer and Transmission Electron Microscopy. The nano flexible polymer was synthesized successfully and it was flexible nano material both in water and in drilling fluid. The filtration ability of the polymer was studied by drilling fluid filter press and the results indicated that the filtration property was equal to commonly used fluid loss agent in drilling fluid. The plugging ability was studied by specific surface and porosity physical adsorption instrument (BET). The surface area reduced after treated with the polymer, indicating the nano flexible polymer entered into nanopores of shale formation due to the adsorption in the surface of shale. It was further exhibited that nanopores of shale were plugged by the nano flexible polymer.


2020 ◽  
Vol 993 ◽  
pp. 799-805
Author(s):  
Gu Fan Zhao ◽  
Wei Na Di

Smart materials, especially environmentally responsive materials are the basis of many applications, and have attracted much more attentions. In recent years, application research of smart materials in the oil and gas industry has begun. Through principle/performance analysis, application environment comparison, and demand analysis, the application potential and application advantages of self-healing concrete, vibration energy-generating rubber and 4D intelligent structural materials in the downhole operations were evaluated. The application status of smart materials in petroleum engineering is introduced. At the same time, combined with the actual domestic engineering requirements, the long-term effect of improving underground plugging, the shale inhibition of drilling fluid, the downhole control and the efficiency of drilling operations are all proposed. For the application prospects, it is recommended to keep track of the research progress of environmentally responsive materials and carry out pre-research work on the application of advanced smart materials in the field of downhole operations.


2014 ◽  
Vol 625 ◽  
pp. 526-529 ◽  
Author(s):  
Lim Symm Nee ◽  
Badrul Mohamed Jan ◽  
Brahim Si Ali ◽  
Ishenny Mohd Noor

It is an open secret that currently oil and gas industry is focusing on increasing hydrocarbon production through underbalanced drilling (UBD) and finding ways to ensure the drilling process is less harmful to the environment. Water-based biopolymer drilling fluids are preferred compared to oil based drilling fluids owing to the fact that it causes less pollution to the environment. This paper investigates the effects of varying concentrations of environmentally safe raw materials, namely glass bubbles, clay, xanthan gum and starch concentrations on the density of the formulated biopolymer drilling fluid to ensure that it is suitable for UBD. As material concentrations were varied, the density for each sample was measured at ambient temperature and pressure. Results showed that the final fluid densities are within acceptable values for UBD (6.78 to 6.86 lb/gal). It is concluded that the formulated water-based biopolymer drilling fluid is suitable to be used in UBD operation.


Sign in / Sign up

Export Citation Format

Share Document