scholarly journals RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes

2021 ◽  
Author(s):  
Xiang Li ◽  
Chuan-Qi Zhong ◽  
Rui Wu ◽  
Xiaozheng Xu ◽  
Zhang-Hua Yang ◽  
...  

AbstractThere remains a significant gap in our quantitative understanding of crosstalk between apoptosis and necroptosis pathways. By employing the SWATH-MS technique, we quantified absolute amounts of up to thousands of proteins in dynamic assembling/de-assembling of TNF signaling complexes. Combining SWATH-MS-based network modeling and experimental validation, we found that when RIP1 level is below ~1000 molecules/cell (mpc), the cell solely undergoes TRADD-dependent apoptosis. When RIP1 is above ~1000 mpc, pro-caspase-8 and RIP3 are recruited to necrosome respectively with linear and nonlinear dependence on RIP1 amount, which well explains the co-occurrence of apoptosis and necroptosis and the paradoxical observations that RIP1 is required for necroptosis but its increase down-regulates necroptosis. Higher amount of RIP1 (>~46,000 mpc) suppresses apoptosis, leading to necroptosis alone. The relation between RIP1 level and occurrence of necroptosis or total cell death is biphasic. Our study provides a resource for encoding the complexity of TNF signaling and a quantitative picture how distinct dynamic interplay among proteins function as basis sets in signaling complexes, enabling RIP1 to play diverse roles in governing cell fate decisions.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanna L. Fox ◽  
Michelle A. Hughes ◽  
Xin Meng ◽  
Nikola A. Sarnowska ◽  
Ian R. Powley ◽  
...  

AbstractRegulated cell death is essential in development and cellular homeostasis. Multi-protein platforms, including the Death-Inducing Signaling Complex (DISC), co-ordinate cell fate via a core FADD:Caspase-8 complex and its regulatory partners, such as the cell death inhibitor c-FLIP. Here, using electron microscopy, we visualize full-length procaspase-8 in complex with FADD. Our structural analysis now reveals how the FADD-nucleated tandem death effector domain (tDED) helical filament is required to orientate the procaspase-8 catalytic domains, enabling their activation via anti-parallel dimerization. Strikingly, recruitment of c-FLIPS into this complex inhibits Caspase-8 activity by altering tDED triple helix architecture, resulting in steric hindrance of the canonical tDED Type I binding site. This prevents both Caspase-8 catalytic domain assembly and tDED helical filament elongation. Our findings reveal how the plasticity, composition and architecture of the core FADD:Caspase-8 complex critically defines life/death decisions not only via the DISC, but across multiple key signaling platforms including TNF complex II, the ripoptosome, and RIPK1/RIPK3 necrosome.


Author(s):  
Zhu-hui Yuan ◽  
Tong Liu ◽  
Hao Wang ◽  
Li-xiang Xue ◽  
Jun-jie Wang

Exposure of tumor cells to ionizing radiation (IR) alters the microenvironment, particularly the fatty acid (FA) profile and activity. Moreover, abnormal FA metabolism, either catabolism or anabolism, is essential for synthesizing biological membranes and delivering molecular signals to induce ferroptotic cell death. The current review focuses on the bistable regulation characteristics of FA metabolism and explains how FA catabolism and anabolism pathway crosstalk harmonize different ionizing radiation-regulated ferroptosis responses, resulting in pivotal cell fate decisions. In summary, targeting key molecules involved in lipid metabolism and ferroptosis may amplify the tumor response to IR.


2019 ◽  
Vol 70 (21) ◽  
pp. 6229-6244
Author(s):  
Gang Li ◽  
Wenxuan Zou ◽  
Liufang Jian ◽  
Jie Qian ◽  
Jie Zhao

Abstract Embryogenesis is an essential process during seed development in higher plants. It has previously been shown that mutation of the Arabidopsis non-SMC element genes AtNSE1 or AtNSE3 leads to early embryo abortion, and their proteins can interact with each other directly. However, the crucial regions of these proteins in this interaction and how the proteins are cytologically involved in Arabidopsis embryo development are unknown. In this study, we found that the C-terminal including the Ring-like motif of AtNSE1 can interact with the N-terminal of AtNSE3, and only the Ring-like motif is essential for binding with three α motifs of AtNSE2 (homologous to AtMMS21). Using genetic assays and by analysing molecular markers of cell fate decisions (STM, WOX5, and WOX8) in mutant nse1 and nse3 embryos, we found that AtNSE1 and AtNSE3 work non-redundantly in early embryo development, and that differentiation of the apical meristem and the hypophysis fails in the mutants, which have disrupted auxin transportation and responses. However, the upper cells of the suspensor in the mutants seem to have proper embryo cell identity. Cytological examination showed that cell death occurred from the early embryo stage, and that vacuolar programmed cell death and necrosis in the nse1 and nse3 mutant embryos led to ovule abortion. Thus, AtNSE1 and AtNSE3 are essential for maintaining cell viability and growth during early embryogenesis. Our results improve our understanding of the functions of SMC5/6 complex in early embryogenesis in Arabidopsis.


2021 ◽  
Vol 9 (10) ◽  
pp. 2152
Author(s):  
Brittany Friedson ◽  
Katrina F. Cooper

The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.


2018 ◽  
Author(s):  
Maximilian W. Fries ◽  
Kalina T. Haas ◽  
Suzan Ber ◽  
John Saganty ◽  
Emma K. Richardson ◽  
...  

The biochemical activities underlying cell-fate decisions vary profoundly even in genetically identical cells. But such non-genetic heterogeneity remains refractory to current imaging methods, because their capacity to monitor multiple biochemical activities in single living cells over time remains limited1. Here, we deploy a family of newly designed GFP-like sensors (NyxBits) with fast photon-counting electronics and bespoke analytics (NyxSense) in multiplexed biochemical imaging, to define a network determining the fate of single cells exposed to the DNA-damaging drug cisplatin. By simultaneously imaging a tri-nodal network comprising the cell-death proteases Caspase-2, -3 and -92, we reveal unrecognized single-cell heterogeneities in the dynamics and amplitude of caspase activation that signify survival versus cell death via necrosis or apoptosis. Non-genetic heterogeneity in the pattern of caspase activation recapitulates traits of therapy resistance previously ascribed solely to genetic causes3,4. Chemical inhibitors that alter these patterns can modulate in a predictable manner the phenotypic landscape of the cellular response to cisplatin. Thus, multiplexed biochemical imaging reveals cellular populations and biochemical states, invisible to other methods, underlying therapeutic responses to an anticancer drug. Our work develops widely applicable tools to monitor the dynamic activation of biochemical networks at single-cell resolution. It highlights the necessity to resolve patterns of network activation in single cells, rather than the average state of individual nodes, to define, and potentially control, mechanisms underlying cellular decisions in health and disease.


Author(s):  
Dario Rizzotto ◽  
Lukas Englmaier ◽  
Andreas Villunger

P53 is known as the most critical tumor suppressor and is often referred to as the guardian of our genome. More than 40 years after its discovery, we are still struggling to understand all molecular details on how this transcription factor prevents oncogenesis or how to leverage current knowledge about its function to improve cancer treatment. Multiple cues, including DNA-damage or mitotic errors, can lead to the stabilization and nuclear translocation of p53, initiating the expression of multiple target genes. These transcriptional programs may well be cell type and stimulus-specific, as is their outcome that ultimately imposes a barrier to cellular transformation. Cell cycle arrest and cell death are two well-studied consequences of p53 activation, but, while being considered as critical, they do not fully explain the consequences of p53 loss-of-function phenotypes in cancer. Here, we discuss how mitotic errors alert the p53 network and give an overview on multiple ways how p53 can trigger cell death. We argue that a comparative analysis of different types of p53 responses, elicited by different triggers in a time-resolved manner in well-defined model systems is critical to understand cell type specific cell fate induced by p53 upon its activation, in order to resolve the remaining mystery of its tumor suppressive function.


2006 ◽  
Vol 281 (16) ◽  
pp. 11235-11249 ◽  
Author(s):  
Liusheng He ◽  
Xiaoli Wu ◽  
Richard Siegel ◽  
Peter E. Lipsky

2021 ◽  
Vol 22 (19) ◽  
pp. 10883
Author(s):  
Dario Rizzotto ◽  
Lukas Englmaier ◽  
Andreas Villunger

P53 is known as the most critical tumor suppressor and is often referred to as the guardian of our genome. More than 40 years after its discovery, we are still struggling to understand all molecular details on how this transcription factor prevents oncogenesis or how to leverage current knowledge about its function to improve cancer treatment. Multiple cues, including DNA-damage or mitotic errors, can lead to the stabilization and nuclear translocation of p53, initiating the expression of multiple target genes. These transcriptional programs may be cell-type- and stimulus-specific, as is their outcome that ultimately imposes a barrier to cellular transformation. Cell cycle arrest and cell death are two well-studied consequences of p53 activation, but, while being considered critical, they do not fully explain the consequences of p53 loss-of-function phenotypes in cancer. Here, we discuss how mitotic errors alert the p53 network and give an overview of multiple ways that p53 can trigger cell death. We argue that a comparative analysis of different types of p53 responses, elicited by different triggers in a time-resolved manner in well-defined model systems, is critical to understand the cell-type-specific cell fate induced by p53 upon its activation in order to resolve the remaining mystery of its tumor-suppressive function.


2017 ◽  
Author(s):  
Hari Sivakumar ◽  
João P. Hespanha ◽  
Kyoungmin Roh ◽  
Stephen R. Proulx

We study the evolution of thep53 core regulation network across the taxonomic span of humans to protozoans and nematodes. We introduce a new model for the core regulation network in mammalian cells, and conduct a formal analysis of the different network configurations that emerge in the evolutionary path to complexity. Solving the high dimensional equations associated with this model is typically challenging, and we develop a novel algorithm to overcome this problem. A key technical tool used is the representation of the distinct pathways in the core regulation networks as “modules”, such that the behavior of the composite of two or more modules can be inferred from the characteristics of each of the individual modules. Apart from simplifying the complexity of the algorithm, this modular representation also allows us to qualitatively compare the distinct types of switching behaviors each network can exhibit. This then allows us to demonstrate how our model for the core regulation network in mammalian cells matches experimentally observed phenomena, and contrast this with the plausible behaviors admitted by the network configurations in putative primordial organisms. We show that the complexity of thep53 core regulation network in vertebrates permits a range of behaviors that can bring about distinct cell fate decisions not possible in the putative primordial organisms.Significance StatementThep53 protein has been protecting organisms from tumors for a billion years. We study the link between the evolution of thep53 network structure and its corresponding tumor suppression strategies. We compare the dynamical behaviors in putative primordial organisms with simple networks with the vertebrate network that contains multiple feedback loops. We show that the vertebrate network, but not the ancestral network, can both repair moderate damage and induce apoptosis if too much damage accumulates, balancing the risk of cancer with the cost of too much cell death. Moreover, the complexity of the vertebrate network allows for adaptation, for example to increasep53 network sensitivity, which is consistent with recent research on large mammals.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3100
Author(s):  
Jürgen Fritsch ◽  
Julia Frankenheim ◽  
Lothar Marischen ◽  
Timea Vadasz ◽  
Anja Troeger ◽  
...  

Signaling via death receptor family members such as TNF-R1 mediates pleiotropic biological outcomes ranging from inflammation and proliferation to cell death. Pro-survival signaling is mediated via TNF-R1 complex I at the cellular plasma membrane. Cell death induction requires complex IIa/b or necrosome formation, which occurs in the cytoplasm. In many cell types, full apoptotic or necroptotic cell death induction requires the internalization of TNF-R1 and receptosome formation to properly relay the signal inside the cell. We interrogated the role of the enzyme A disintegrin and metalloprotease 17 (ADAM17)/TACE (TNF-α converting enzyme) in death receptor signaling in human hematopoietic cells, using pharmacological inhibition and genetic ablation. We show that in U937 and Jurkat cells the absence of ADAM17 does not abrogate, but rather increases TNF mediated cell death. Likewise, cell death triggered via DR3 is enhanced in U937 cells lacking ADAM17. We identified ADAM17 as the key molecule that fine-tunes death receptor signaling. A better understanding of cell fate decisions made via the receptors of the TNF-R1 superfamily may enable us, in the future, to more efficiently treat infectious and inflammatory diseases or cancer.


Sign in / Sign up

Export Citation Format

Share Document