Using weighted gene co-expression network analysis (WGCNA) to identify the hub genes related to hypoxic adaptation in yak (Bos grunniens)

2021 ◽  
Author(s):  
Qi Bao ◽  
Xiaolan Zhang ◽  
Pengjia Bao ◽  
Chunnian Liang ◽  
Xian Guo ◽  
...  
2020 ◽  
Vol 8 (21) ◽  
pp. 1348-1348
Author(s):  
Zetao Ma ◽  
Zhida Shen ◽  
Yingchao Gong ◽  
Jiaqi Zhou ◽  
Xiaoou Chen ◽  
...  

FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Chun Li ◽  
Bangming Pu ◽  
Long Gu ◽  
Mingwei Zhang ◽  
Hongping Shen ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Chuxiang Lei ◽  
Dan Yang ◽  
Wenlin Chen ◽  
Haoxuan Kan ◽  
Fang Xu ◽  
...  

Abstract Background Thoracic aortic aneurysm (TAA) can be life-threatening due to the progressive weakening and dilatation of the aortic wall. Once the aortic wall has ruptured, no effective pharmaceutical therapies are available. However, studies on TAA at the gene expression level are limited. Our study aimed to identify the driver genes and critical pathways of TAA through gene coexpression networks. Methods We analyzed the genetic data of TAA patients from a public database by weighted gene coexpression network analysis (WGCNA). Modules with clinical significance were identified, and the differentially expressed genes (DEGs) were intersected with the genes in these modules. Gene Ontology and pathway enrichment analyses were performed. Finally, hub genes that might be driving factors of TAA were identified. Furthermore, we evaluated the diagnostic accuracy of these genes and analyzed the composition of immune cells using the CIBERSORT algorithm. Results We identified 256 DEGs and two modules with clinical significance. The immune response, including leukocyte adhesion, mononuclear cell proliferation and T cell activation, was identified by functional enrichment analysis. CX3CR1, C3, and C3AR1 were the top 3 hub genes in the module correlated with TAA, and the areas under the curve (AUCs) by receiver operating characteristic (ROC) analysis of all the hub genes exceeded 0.7. Finally, we found that the proportions of infiltrating immune cells in TAA and normal tissues were different, especially in terms of macrophages and natural killer (NK) cells. Conclusion Chemotaxis and the complement system were identified as crucial pathways in TAA, and macrophages with interactive immune cells may regulate this pathological process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bahman Panahi ◽  
Mohammad Amin Hejazi

AbstractDespite responses to salinity stress in Dunaliella salina, a unicellular halotolerant green alga, being subject to extensive study, but the underlying molecular mechanism remains unknown. Here, Empirical Bayes method was applied to identify the common differentially expressed genes (DEGs) between hypersaline and normal conditions. Then, using weighted gene co-expression network analysis (WGCNA), which takes advantage of a graph theoretical approach, highly correlated genes were clustered as a module. Subsequently, connectivity patterns of the identified modules in two conditions were surveyed to define preserved and non-preserved modules by combining the Zsummary and medianRank measures. Finally, common and specific hub genes in non-preserved modules were determined using Eigengene-based module connectivity or module membership (kME) measures and validation was performed by using leave-one-out cross-validation (LOOCV). In this study, the power of beta = 12 (scale-free R2 = 0.8) was selected as the soft-thresholding to ensure a scale-free network, which led to the identification of 15 co-expression modules. Results also indicate that green, blue, brown, and yellow modules are non-preserved in salinity stress conditions. Examples of enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in non-preserved modules are Sulfur metabolism, Oxidative phosphorylation, Porphyrin and chlorophyll metabolism, Vitamin B6 metabolism. Moreover, the systems biology approach was applied here, proposed some salinity specific hub genes, such as radical-induced cell death1 protein (RCD1), mitogen-activated protein kinase kinase kinase 13 (MAP3K13), long-chain acyl-CoA synthetase (ACSL), acetyl-CoA carboxylase, biotin carboxylase subunit (AccC), and fructose-bisphosphate aldolase (ALDO), for the development of metabolites accumulating strains in D. salina.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jin-Yu Sun ◽  
Yang Hua ◽  
Hui Shen ◽  
Qiang Qu ◽  
Jun-Yan Kan ◽  
...  

Abstract Background Calcific aortic valve disease (CAVD) is the most common subclass of valve heart disease in the elderly population and a primary cause of aortic valve stenosis. However, the underlying mechanisms remain unclear. Methods The gene expression profiles of GSE83453, GSE51472, and GSE12644 were analyzed by ‘limma’ and ‘weighted gene co-expression network analysis (WGCNA)’ package in R to identify differentially expressed genes (DEGs) and key modules associated with CAVD, respectively. Then, enrichment analysis was performed based on Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, DisGeNET, and TRRUST database. Protein–protein interaction network was constructed using the overlapped genes of DEGs and key modules, and we identified the top 5 hub genes by mixed character calculation. Results We identified the blue and yellow modules as the key modules. Enrichment analysis showed that leukocyte migration, extracellular matrix, and extracellular matrix structural constituent were significantly enriched. SPP1, TNC, SCG2, FAM20A, and CD52 were identified as hub genes, and their expression levels in calcified or normal aortic valve samples were illustrated, respectively. Conclusions This study suggested that SPP1, TNC, SCG2, FAM20A, and CD52 might be hub genes associated with CAVD. Further studies are required to elucidate the underlying mechanisms and provide potential therapeutic targets.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94868 ◽  
Author(s):  
Yun Zhou ◽  
Jiucheng Xu ◽  
Yunqing Liu ◽  
Juntao Li ◽  
Cuifang Chang ◽  
...  

Author(s):  
Vahid Mansouri ◽  
◽  
Mostafa Rezaiee Tavirani ◽  
Farshad Okhovatian ◽  
◽  
...  

Aim: Screening of candidate genes related to sural nerve diabetic neuropathy to find the critical ones is the aim of this study. Back Ground: Diabetes mellitus is a chronic disease causes by insulin uptake or deficiency. Side effects of diabetes are numerous according to severity of disease. Diabetes could harm the peripheral nerves with chronic pain, lead to nerve damage entitled diabetic neuropathy (DN). Signs and symptoms of DN are sharp pains, numbness, and tangling. Many patterns of nerve injuries could happen during DN but distal symmetric polyneuropathy (DSP) is most common. On the other hand, network analysis is a useful tool to assess incidences and progression of diseases. Methods: Expression of different genes in diabetic patients with and without progressive neuropathy of surreal nerve (GSE24290) is considered as including data. GEO2R was applied to first step analysis to find the significant differentially expressed genes (DEGs). The queried significant DEGs plus 100 first neighbors were included in a network by Cytoscape software. The network was analyzed by Network analyzed application of Cytoscape and the central nodes were determined. Results: The total 26 significant DEGs plus 100 first neighbors were interacted to form the network. INS, ALB, AKT1, APP, SNAP25, NEFL, GFAP, IL6, NEFM, TNF, MAPT, GAP43, and MBP were identified as 13 hubs of the network. NEFL and NEFM were highlighted as the queried hub genes. Insulin as the top hub node was determined among all interacted genes (the queried and added genes). Conclusions: INS, NEFL, and NEFM are key genes in DN which are involve in metabolism regulation and intra cellular transportation into axons and denderites respectively.


2021 ◽  
Vol 7 ◽  
Author(s):  
Tao Yan ◽  
Shijie Zhu ◽  
Miao Zhu ◽  
Chunsheng Wang ◽  
Changfa Guo

Background: Atrial fibrillation (AF) is the most common tachyarrhythmia in the clinic, leading to high morbidity and mortality. Although many studies on AF have been conducted, the molecular mechanism of AF has not been fully elucidated. This study was designed to explore the molecular mechanism of AF using integrative bioinformatics analysis and provide new insights into the pathophysiology of AF.Methods: The GSE115574 dataset was downloaded, and Cibersort was applied to estimate the relative expression of 22 kinds of immune cells. Differentially expressed genes (DEGs) were identified through the limma package in R language. Weighted gene correlation network analysis (WGCNA) was performed to cluster DEGs into different modules and explore relationships between modules and immune cell types. Functional enrichment analysis was performed on DEGs in the significant module, and hub genes were identified based on the protein-protein interaction (PPI) network. Hub genes were then verified using quantitative real-time polymerase chain reaction (qRT-PCR).Results: A total of 2,350 DEGs were identified and clustered into eleven modules using WGCNA. The magenta module with 246 genes was identified as the key module associated with M1 macrophages with the highest correlation coefficient. Three hub genes (CTSS, CSF2RB, and NCF2) were identified. The results verified using three other datasets and qRT-PCR demonstrated that the expression levels of these three genes in patients with AF were significantly higher than those in patients with SR, which were consistent with the bioinformatic analysis.Conclusion: Three novel genes identified using comprehensive bioinformatics analysis may play crucial roles in the pathophysiological mechanism in AF, which provide potential therapeutic targets and new insights into the treatment and early detection of AF.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243507
Author(s):  
Zhihong Wu ◽  
Erhan Hai ◽  
Zhengyang Di ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Objective Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. Methods We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45–135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). Results Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n


Sign in / Sign up

Export Citation Format

Share Document