Neferine increases sensitivities to multiple anticancer drugs via downregulation of Bcl-2 expression in renal cancer cells

2022 ◽  
Author(s):  
Eun-Ae Kim ◽  
Ji Hoon Jang ◽  
Eon-Gi Sung ◽  
In-Hwan Song ◽  
Joo-Young Kim ◽  
...  
2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1201
Author(s):  
Garri Manasaryan ◽  
Dmitry Suplatov ◽  
Sergey Pushkarev ◽  
Viktor Drobot ◽  
Alexander Kuimov ◽  
...  

The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.


2021 ◽  
Vol 12 (12) ◽  
pp. 4547-4556
Author(s):  
Hongzhi Qiao ◽  
Lei Zhang ◽  
Dong Fang ◽  
Zhenzhu Zhu ◽  
Weijiang He ◽  
...  

Bcl-2-related tumor resistance to anticancer drugs can be overcome by silencing the cellular Bcl-2 gene via RNA interference. The realization of the goal is exemplified by delivering Bcl-2 siRNA and a tumor-resistant Cu complex to cancer cells with an ATP-responsive nanocarrier.


2006 ◽  
Vol 13 ◽  
pp. S362
Author(s):  
Ahmed M. El-Zawahry ◽  
David Holman ◽  
Xiang Liu ◽  
Saeed ElOjeimy ◽  
Sunil Sudarshan ◽  
...  

Tumor Biology ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 551-559 ◽  
Author(s):  
Minoru Kobayashi ◽  
Tatsuo Morita ◽  
Nicole A. L. Chun ◽  
Aya Matsui ◽  
Masafumi Takahashi ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e23919 ◽  
Author(s):  
Aninda Basu ◽  
Pallavi Banerjee ◽  
Alan G. Contreras ◽  
Evelyn Flynn ◽  
Soumitro Pal

FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Liang Meng ◽  
Deqiang Chen ◽  
Gaopei Meng ◽  
Li Lu ◽  
Chenggang Han
Keyword(s):  

2021 ◽  
Vol 22 ◽  
Author(s):  
Alekhya Puppala ◽  
Sourbh Rankawat ◽  
Sandipan Ray

Background: Intrinsic rhythms in host and cancer cells play an imperative role in tumorigenesis and anticancer therapy. Circadian medicine in cancer is principally reliant on the control of growth and development of cancer cells or tissues by targeting the molecular clock and implementing time-of-day-based anticancer treatments for therapeutic improvements. In recent years, based on extensive high-throughput studies, we witnessed the arrival of several drugs and drug-like compounds that can modulate circadian timekeeping for therapeutic gain in cancer management. Objective: This perspective article intends to illustrate the current trends in circadian medicine in cancer, focusing on clock-modulating pharmacological compounds and circadian regulation of anticancer drug metabolism and efficacy. Scope and Approach: Considering the critical roles of the circadian clock in metabolism, cell signaling, and apoptosis, chronopharmacology research is exceedingly enlightening for understanding cancer biology and improving anticancer therapeutics. In addition to reviewing the relevant literature, we investigated the rhythmic expression of molecular targets for many anticancer drugs frequently used to treat different cancer types. Key Findings and Conclusion: There are adequate empirical pieces of evidence supporting circadian regulation of drug metabolism, transport, and detoxification. Administration of anticancer drugs at specific dosing times can improve their effectiveness and reduce the toxic effects. Moreover, pharmacological modulators of the circadian clock could be used for targeted anticancer therapeutics such as boosting circadian rhythms in the host can markedly reduce the growth and viability of tumors. All in all, precision chronomedicine can offer multiple advantages over conventional anticancer therapy.


Sign in / Sign up

Export Citation Format

Share Document