Circadian Timekeeping in Anticancer Therapeutics: An Emerging Vista of Chronopharmacology Research

2021 ◽  
Vol 22 ◽  
Author(s):  
Alekhya Puppala ◽  
Sourbh Rankawat ◽  
Sandipan Ray

Background: Intrinsic rhythms in host and cancer cells play an imperative role in tumorigenesis and anticancer therapy. Circadian medicine in cancer is principally reliant on the control of growth and development of cancer cells or tissues by targeting the molecular clock and implementing time-of-day-based anticancer treatments for therapeutic improvements. In recent years, based on extensive high-throughput studies, we witnessed the arrival of several drugs and drug-like compounds that can modulate circadian timekeeping for therapeutic gain in cancer management. Objective: This perspective article intends to illustrate the current trends in circadian medicine in cancer, focusing on clock-modulating pharmacological compounds and circadian regulation of anticancer drug metabolism and efficacy. Scope and Approach: Considering the critical roles of the circadian clock in metabolism, cell signaling, and apoptosis, chronopharmacology research is exceedingly enlightening for understanding cancer biology and improving anticancer therapeutics. In addition to reviewing the relevant literature, we investigated the rhythmic expression of molecular targets for many anticancer drugs frequently used to treat different cancer types. Key Findings and Conclusion: There are adequate empirical pieces of evidence supporting circadian regulation of drug metabolism, transport, and detoxification. Administration of anticancer drugs at specific dosing times can improve their effectiveness and reduce the toxic effects. Moreover, pharmacological modulators of the circadian clock could be used for targeted anticancer therapeutics such as boosting circadian rhythms in the host can markedly reduce the growth and viability of tumors. All in all, precision chronomedicine can offer multiple advantages over conventional anticancer therapy.

2021 ◽  
Vol 7 (7) ◽  
pp. eabd2645
Author(s):  
Yool Lee ◽  
Shi Yi Fong ◽  
Joy Shon ◽  
Shirley L. Zhang ◽  
Rebekah Brooks ◽  
...  

Circadian rhythms are an integral part of physiology, underscoring their relevance for the treatment of disease. We conducted cell-based high-throughput screening to investigate time-of-day influences on the activity of known antitumor agents and found that many compounds exhibit daily rhythms of cytotoxicity concomitant with previously reported oscillations of target genes. Rhythmic action of HSP90 inhibitors was mediated by specific isoforms of HSP90, genetic perturbation of which affected the cell cycle. Furthermore, clock mutants affected the cell cycle in parallel with abrogating rhythms of cytotoxicity, and pharmacological inhibition of the cell cycle also eliminated rhythmic drug effects. An HSP90 inhibitor reduced growth rate of a mouse melanoma in a time-of-day–specific manner, but efficacy was impaired in clock-deficient tumors. These results provide a powerful rationale for appropriate daily timing of anticancer drugs and suggest circadian regulation of the cell cycle within the tumor as an underlying mechanism.


2019 ◽  
Author(s):  
Noriane M. L. Simon ◽  
Calum A. Graham ◽  
Nicholas E. Comben ◽  
Alistair M. Hetherington ◽  
Antony N. Dodd

AbstractIn plants, water use efficiency is a complex trait derived from numerous physiological and developmental characteristics. Here, we investigated the involvement of circadian regulation in long-term water use efficiency. Circadian rhythms are generated by the circadian oscillator, which provides a cellular measure of the time of day. In plants, the circadian oscillator contributes to the regulation of many aspects of physiology, including stomatal opening, the rate of photosynthesis, carbohydrate metabolism and developmental processes. We investigated in Arabidopsis the impact of the misregulation of genes encoding a large number of components of the circadian oscillator upon whole plant, long-term water use efficiency. From this, we identified a role for the circadian oscillator in water use efficiency. This appears to be due to contributions of the circadian clock to the control of transpiration and biomass accumulation. We also identified that the circadian oscillator within guard cells can contribute to long-term water use efficiency. Our experiments indicate that knowledge of circadian regulation will be important for developing future crops that use water more efficiently.One-sentence summaryThe circadian clock in Arabidopsis makes an important contribution to long-term water use efficiency.


2020 ◽  
Vol 21 (11) ◽  
pp. 3954
Author(s):  
Monika Pawłowska ◽  
Anna Kwaśniewska ◽  
Zofia Mazerska ◽  
Ewa Augustin

Activity modulation of drug metabolism enzymes can change the biotransformation of chemotherapeutics and cellular responses induced by them. As a result, drug-drug interactions can be modified. Acridinone derivatives, represented here by C-1305 and C-1311, are potent anticancer drugs. Previous studies in non-cellular systems showed that they are mechanism-based inhibitors of cytochrome P4503A4 and undergo glucuronidation via UDP-glucuronosyltranspherase 1A10 isoenzyme (UGT1A10). Therefore, we investigated the potency of these compounds to modulate P4503A4 and UGT1A10 activity in breast MCF-7 and colon HCT116 cancer cells and their influence on cytotoxicity and cellular response in cells with different expression levels of studied isoenzymes. We show that C-1305 and C-1311 are inducers of not only P4503A4 but also UGT1A10 activity. MCF-7 and HCT116 cells with high P4503A4 activity are more sensitive to acridinone derivatives and undergo apoptosis/necrosis to a greater extent. UGT1A10 was demonstrated to be responsible for C-1305 and C-1311 glucuronidation in cancer cells and glucuronide products were excreted outside the cell very fast. Finally, we show that glucuronidation of C-1305 antitumor agent enhances its pro-apoptotic properties in HCT116 cells, while the cytotoxicity and cellular response induced by C-1311 did not change after drug glucuronidation in both cell lines.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Su Ji Kim ◽  
Hyun Soo Kim ◽  
Young Rok Seo

Redox homeostasis is essential for the maintenance of diverse cellular processes. Cancer cells have higher levels of reactive oxygen species (ROS) than normal cells as a result of hypermetabolism, but the redox balance is maintained in cancer cells due to their marked antioxidant capacity. Recently, anticancer therapies that induce oxidative stress by increasing ROS and/or inhibiting antioxidant processes have received significant attention. The acceleration of accumulative ROS disrupts redox homeostasis and causes severe damage in cancer cells. In this review, we describe ROS-inducing cancer therapy and the anticancer mechanism employed by prooxidative agents. To understand the comprehensive biological response to certain prooxidative anticancer drugs such as 2-methoxyestradiol, buthionine sulfoximine, cisplatin, doxorubicin, imexon, and motexafin gadolinium, we propose and visualize the drug-gene, drug-cell process, and drug-disease interactions involved in oxidative stress induction and antioxidant process inhibition as well as specific side effects of these drugs using pathway analysis with a big data-based text-mining approach. Our review will be helpful to improve the therapeutic effects of anticancer drugs by providing information about biological changes that occur in response to prooxidants. For future directions, there is still a need for pharmacogenomic studies on prooxidative agents as well as the molecular mechanisms underlying the effects of the prooxidants and/or antioxidant-inhibitor agents for effective anticancer therapy through selective killing of cancer cells.


Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Author(s):  
Saleh A. Almatroodi ◽  
Mansoor Ali Syed ◽  
Arshad Husain Rahmani

Background:: Curcumin, an active compound of turmeric spice is one of the most-studies natural compounds and have been widely recognized as chemopreventive agents. Several molecular mechanisms have been proven, curcumin and its analogs play a role in cancer prevention through modulating various cell signaling pathways as well as inhibition of carcinogenesis process. Objective:: To study the potential role of curcumin in the management of various types of cancer through modulating cell signalling molecules based on available literature and recent patents. Methods:: A wide-ranging literature survey was performed based on Scopus, PubMed, PubMed central and Google scholar for the implication of curcumin in cancer management along with special emphasis on human clinical trials. Moreover, patents were searched through www.google.com/patents, www.freepatentsonline.com and www.freshpatents.com. Result:: Recent studies based on cancer cells have proven that curcumin have potential effects against cancer cells, prevent the growth of cancer and act as cancer therapeutic agents. Besides, curcumin exerted anticancer effects through inducing apoptosis, activating tumor suppressor genes, cell cycle arrest, inhibiting tumor angiogenesis, initiation, promotion and progression stages of tumor. It was established that co-treatment of curcumin and anti-cancer drugs could induce apoptosis and also play a significant role in the suppression of the invasion and metastasis of cancer cells. Conclusion:: Accumulating evidences suggest that curcumin has potentiality to inhibit cancer growth, induced apoptosis and modulate various cell signalling pathways molecules. Well-designed clinical trials of curcumin based on human subjects are still needed to establish the bioavailability, mechanism of action, efficacy and safe dose in the management of various cancers.


2020 ◽  
Vol 21 (2) ◽  
pp. 254-266 ◽  
Author(s):  
Khandan Ilkhani ◽  
Milad Bastami ◽  
Soheila Delgir ◽  
Asma Safi ◽  
Shahrzad Talebian ◽  
...  

: Metabolic reprogramming is a significant property of various cancer cells, which most commonly arises from the Tumor Microenvironment (TME). The events of metabolic pathways include the Warburg effect, shifting in Krebs cycle metabolites, and the rate of oxidative phosphorylation, potentially providing energy and structural requirements for the development and invasiveness of cancer cells. TME and tumor metabolism shifting have a close relationship through bidirectional signaling pathways between stromal and tumor cells. Cancer- Associated Fibroblasts (CAFs), as the most dominant cells of TME, play a crucial role in the aberrant metabolism of cancer. Furthermore, the stated relationship can affect survival, progression, and metastasis in cancer development. Recently, exosomes are considered one of the most prominent factors in cellular communications considering effective content and bidirectional mediatory effect between tumor and stromal cells. In this regard, CAF-Derived Exosomes (CDE) exhibit an efficient obligation to induce metabolic reprogramming for promoting growth and metastasis of cancer cells. The understanding of cancer metabolism, including factors related to TME, could lead to the discovery of a potential biomarker for diagnostic and therapeutic approaches in cancer management. This review focuses on the association between metabolic reprogramming and engaged microenvironmental, factors such as CAFs, and the associated derived exosomes.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Francisco Conceição ◽  
Daniela M. Sousa ◽  
Joana Paredes ◽  
Meriem Lamghari

AbstractThe vast majority of patients with advanced breast cancer present skeletal complications that severely compromise their quality of life. Breast cancer cells are characterized by a strong tropism to the bone niche. After engraftment and colonization of bone, breast cancer cells interact with native bone cells to hinder the normal bone remodeling process and establish an osteolytic “metastatic vicious cycle”. The sympathetic nervous system has emerged in recent years as an important modulator of breast cancer progression and metastasis, potentiating and accelerating the onset of the vicious cycle and leading to extensive bone degradation. Furthermore, sympathetic neurotransmitters and their cognate receptors have been shown to promote several hallmarks of breast cancer, such as proliferation, angiogenesis, immune escape, and invasion of the extracellular matrix. In this review, we assembled the current knowledge concerning the complex interactions that take place in the tumor microenvironment, with a special emphasis on sympathetic modulation of breast cancer cells and stromal cells. Notably, the differential action of epinephrine and norepinephrine, through either α- or β-adrenergic receptors, on breast cancer progression prompts careful consideration when designing new therapeutic options. In addition, the contribution of sympathetic innervation to the formation of bone metastatic foci is highlighted. In particular, we address the remarkable ability of adrenergic signaling to condition the native bone remodeling process and modulate the bone vasculature, driving breast cancer cell engraftment in the bone niche. Finally, clinical perspectives and developments on the use of β-adrenergic receptor inhibitors for breast cancer management and treatment are discussed.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 266
Author(s):  
Juan Alfonso Redondo ◽  
Romain Bibes ◽  
Alizée Vercauteren Drubbel ◽  
Benjamin Dassy ◽  
Xavier Bisteau ◽  
...  

Esophageal squamous cell carcinoma (eSCC) accounts for more than 85% cases of esophageal cancer worldwide and the 5-year survival rate associated with metastatic eSCC is poor. This low survival rate is the consequence of a complex mechanism of resistance to therapy and tumor relapse. To effectively reduce the mortality rate of this disease, we need to better understand the molecular mechanisms underlying the development of resistance to therapy and translate that knowledge into novel approaches for cancer treatment. The circadian clock orchestrates several physiological processes through the establishment and synchronization of circadian rhythms. Since cancer cells need to fuel rapid proliferation and increased metabolic demands, the escape from circadian rhythm is relevant in tumorigenesis. Although clock related genes may be globally repressed in human eSCC samples, PER2 expression still oscillates in some human eSCC cell lines. However, the consequences of this circadian rhythm are still unclear. In the present study, we confirm that PER2 oscillations still occur in human cancer cells in vitro in spite of a deregulated circadian clock gene expression. Profiling of eSCC cells by RNAseq reveals that when PER2 expression is low, several transcripts related to apoptosis are upregulated. Consistently, treating eSCC cells with cisplatin when PER2 expression is low enhances DNA damage and leads to a higher apoptosis rate. Interestingly, this process is conserved in a mouse model of chemically-induced eSCC ex vivo. These results therefore suggest that response to therapy might be enhanced in esophageal cancers using chronotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1201
Author(s):  
Garri Manasaryan ◽  
Dmitry Suplatov ◽  
Sergey Pushkarev ◽  
Viktor Drobot ◽  
Alexander Kuimov ◽  
...  

The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document