scholarly journals Biodegradable nanoparticles combining cancer cell targeting and anti-angiogenic activity for synergistic chemotherapy in epithelial cancer

Author(s):  
Francesca Moret ◽  
Claudia Conte ◽  
Diletta Esposito ◽  
Giovanni Dal Poggetto ◽  
Concetta Avitabile ◽  
...  

AbstractA biodegradable engineered nanoplatform combining anti-angiogenic activity and targeting of cancer cells to improve the anticancer activity of docetaxel (DTX) is here proposed. Indeed, we have developed biodegradable nanoparticles (NPs) of poly(ethylene glycol)-poly(ε-caprolactone), exposing on the surface both folate motifs (Fol) for recognition in cells overexpressing Folate receptor-α (FRα) and the anti-angiogenic hexapeptide aFLT1. NPs showed a size around 100 nm, the exposure of 60% of Fol moieties on the surface, and the ability to entrap DTX and sustain its release with time. NPs were stable in simulated biological fluids and slightly interacted with Fetal Bovine serum, especially in the formulation decorated with Fol and aFLT1. The presence of Fol on NPs did not impair the anti-angiogenic activity of aFLT1, as assessed by in vitro tube formation assay in HUVEC endothelial cells. In both 2D and 3D KB cell cultures in vitro, the cytotoxicity of DTX loaded in NPs was not significantly affected by Fol/aFLT1 double decoration compared to free DTX. Remarkably, NPs distributed differently in 3D multicellular spheroids of FRα-positive KB cancer cells depending on the type of ligand displayed on the surface. In particular, NPs unmodified on the surface were randomly distributed in the spheroid, whereas the presence of Fol promoted the accumulation in the outer rims of the spheroid. Finally, NPs with Fol and aFLT1 gave a uniform distribution throughout the spheroid structure. When tested in zebrafish embryos xenografted with KB cells, NPs displaying Fol/aFLT1 reduced DTX systemic toxicity and inhibited the growth of the tumor mass and associated vasculature synergistically. Overall, nanotechnology offers excellent ground for combining therapeutic concepts in cancer, paving the way to novel multifunctional nanopharmaceuticals decorated with bioactive elements that can significantly improve therapeutic outcomes. Graphical abstract

2021 ◽  
Author(s):  
Francesca moret ◽  
Claudia Conte ◽  
Diletta Esposito ◽  
Giovanni Dal Poggetto ◽  
Concetta Avitabile ◽  
...  

Abstract A biodegradable engineered nanoplatform combining anti-angiogenic activity and targeting of cancer cells to improve the anticancer activity of docetaxel (DTX) is here proposed. Indeed, we have developed biodegradable nanoparticles (NPs) of poly(ethylene glycol)-poly(ε-caprolactone), exposing on the surface both folate motifs (Fol) for recognition in cells overexpressing Folate Receptor- a (FRa) and the anti-angiogenic hexapeptide aFLT1. The presence of Fol on NPs did not impair the anti-angiogenic activity of aFLT1, as assessed by in vitro tube formation assay in HUVEC endothelial cells. In both 2D and 3D KB cell cultures in vitro , the cytotoxicity of DTX loaded in NPs was not significantly affected by Fol/aFLT1 double decoration as compared to free DTX. Remarkably, NPs distributed differently in 3D multicellular spheroids of FRa-positive KB cancer cells depending on the type of ligand displayed on the surface. When tested in vivo in zebrafish embryos xenografted with KB cells, NPs displaying Fol/aFLT1 reduced DTX systemic toxicity and inhibited in a synergistic way the growth of the tumor mass and associated vasculature. Overall, nanotechnology offers excellent ground for combining therapeutic concepts in cancer, paving the way to the development of novel multifunctional nanopharmaceuticals where surface decoration with bioactive elements can significantly improve therapeutic outcomes.


Planta Medica ◽  
2018 ◽  
Vol 84 (11) ◽  
pp. 779-785 ◽  
Author(s):  
Yanisa Mittraphab ◽  
Nattaya Ngamrojanavanich ◽  
Kuniyoshi Shimizu ◽  
Kiminori Matsubara ◽  
Khanitha Pudhom

The plants in the genus Derris have proven to be a rich source of rotenoids, of which cytotoxic effect against cancer cells seem to be pronounced. However, their effect on angiogenesis playing a crucial role in both cancer growth and metastasis has been seldom investigated. This study aimed at investigating the effect of the eight rotenoids (1–8) isolated from Derris trifoliata stems on three cancer cells and angiogenesis. Among them, 12a-hydroxyrotenone (2) exhibited potent inhibition on both cell growth and migration of HCT116 colon cancer cells. Further, anti-angiogenic assay in an ex vivo model was carried out to determine the effect of the isolated rotenoids on angiogenesis. Results revealed that 12a-hydroxyrotenone (2) displayed the most potent suppression of microvessel sprouting. The in vitro assay on human umbilical vein endothelial cells was performed to determine whether compound 2 elicits anti-angiogenic effect and its effect was found to occur via suppression of endothelial cells proliferation and tube formation, but not endothelial cells migration. This study provides the first evidence that compound 2 could potently inhibit HCT116 cancer migration and anti-angiogenic activity, demonstrating that 2 might be a potential agent or a lead compound for cancer therapy.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Asif Pathan ◽  
Talha Farid ◽  
Abdur Rahman Khan ◽  
Marjan Nasr ◽  
Marcin Wysoczynski ◽  
...  

Cell-based therapy is considered a promising approach to treat the damaged heart due to myocardial infarction. Although the mechanisms for their beneficial action are not yet clear, exosome/extracellular vesicles (EVs) secreted by these cells may be involved in their reparative paracrine signaling. Previous studies have suggested that EVs isolated from several cell types (e.g. cardiosphere-derived cells, embryonic stem cell, CD34+ stem cells) induce angiogenic activity both in vitro and in vivo . Here, we investigated whether EVs secreted by adult human cardiac mesenchymal cells (hCMCs) exhibit pro-angiogenic activity, and if so, what signaling molecules are involved in this process. hCMCs were isolated from right atrial appendage of patients undergoing cardiac procedures and were characterized by the expression of classical mesenchymal markers- CD29 (99.1%), CD73 (99.0%), CD90 (20.4%), CD105 (99.3%), CD 31 (16.8%), CD34 (0.9%) and CD45 (0.1%). EVs isolated from serum-free 24-hour hCMC conditioned media using PEG4000-based precipitation technique exhibited two distinct population of particles with size range of 10-60nm and 100-500nm in diameter; expressed characteristic exosomal markers- CD63, HSP70, Flotillin-1 and were negative for cellular organelle markers- calreticulin (ER and apoptotic bodies), prohibitin (mitochondria), GM130 (Golgi), Lamin B (nuclear protein), β-actin (cytoskeleton) and PMP70 (peroxisomes) as determined by immunoblotting. In vitro assays revealed that hCMC EVs promote human umbilical cord endothelial cells (HUVECs) proliferation, transwell migration in Boyden chamber and tube formation on Matrigel, indicative of enhanced angiogenesis. Angiogenic proteomic array identified that angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2) proteins are highly enriched in EVs secreted by hCMCs. Furthermore, hCMC EV mediated HUVEC migration and tube formation was inhibited by TIE2 kinase inhibitor. Overall, these findings suggest that ANG-1 and ANG-2 are the key component of hCMC secreted EVs and they promote angiogenesis by activating TIE2 receptor in endothelial cells.


1999 ◽  
Vol 10 (2) ◽  
pp. 289-298 ◽  
Author(s):  
Alberto Gabizon ◽  
Aviva T. Horowitz ◽  
Dorit Goren ◽  
Dinah Tzemach ◽  
Frederika Mandelbaum-Shavit ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 237 ◽  
Author(s):  
Takayuki Okamoto ◽  
Haruki Usuda ◽  
Tetsuya Tanaka ◽  
Koichiro Wada ◽  
Motomu Shimaoka

Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis.


Biomedicines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 37 ◽  
Author(s):  
Zachary I. Stryker ◽  
Mehdi Rajabi ◽  
Paul J. Davis ◽  
Shaker A. Mousa

Angiogenesis assays allow for the evaluation of pro- or anti-angiogenic activity of endogenous or exogenous factors (stimulus or inhibitors) through investigation of their pro-or anti- proliferative, migratory, and tube formation effects on endothelial cells. To model the process of angiogenesis and the effects of biomolecules on that process, both in vitro and in vivo methods are currently used. In general, in vitro methods monitor specific stages in the angiogenesis process and are used for early evaluations, while in vivo methods more accurately simulate the living microenvironment to provide more pertinent information. We review here the current state of angiogenesis assays as well as their mechanisms, advantages, and limitations.


2019 ◽  
Vol 20 (9) ◽  
pp. 2156 ◽  
Author(s):  
Akhtar ◽  
Ghali ◽  
Wang ◽  
Bell ◽  
Li ◽  
...  

High-risk human papilloma virus (HPV) infection is directly associated with cervical cancer development. Arsenic trioxide (ATO), despite inducing apoptosis in HPV-infected cervical cancer cells in vitro, has been compromised by toxicity and poor pharmacokinetics in clinical trials. Therefore, to improve ATO’s therapeutic profile for HPV-related cancers, this study aims to explore the effects of length of ligand spacers of folate-targeted liposomes on the efficiency of ATO delivery to HPV-infected cells. Fluorescent ATO encapsulated liposomes with folic acid (FA) conjugated to two different PEG lengths (2000 Da and 5000 Da) were synthesised, and their cellular uptake was examined for HPV-positive HeLa and KB and HPV-negative HT-3 cells using confocal microscopy, flow cytometry, and spectrophotometer readings. Cellular arsenic quantification and anti-tumour efficacy was evaluated through inductively coupled plasma-mass spectrometry (ICP-MS) and cytotoxicity studies, respectively. Results showed that liposomes with a longer folic acid-polyethylene glycol (FA-PEG) spacer (5000 Da) displayed a higher efficiency in targeting folate receptor (FR) + HPV-infected cells without increasing any inherent cytotoxicity. Targeted liposomally delivered ATO also displayed superior selectivity and efficiency in inducing higher cell apoptosis in HPV-positive cells per unit of arsenic taken up than free ATO, in contrast to HT-3. These findings may hold promise in improving the management of HPV-associated cancers.


2016 ◽  
Vol 69 ◽  
pp. 1147-1158 ◽  
Author(s):  
Rozita Nasiri ◽  
Javad Hamzehalipour Almaki ◽  
Ani Binti Idris ◽  
Fadzilah Adibah Abdul Majid ◽  
Mahtab Nasiri ◽  
...  

2006 ◽  
Vol 6 (9) ◽  
pp. 2860-2866 ◽  
Author(s):  
Dongwon Lee ◽  
Richard Lockey ◽  
Shyam Mohapatra

Chitosan-mediated gene delivery has gained an increasing interest due to its ability to treat cancers and genetic diseases. However, low transfection efficiency and lack of target specificity limit its application for gene and drug delivery. In the present work, folic acid was covalently conjugated to chitosan as a targeting ligand in an attempt to specifically deliver DNA to folate receptor-overexpressing cancer cells. Folic acid-conjugated chitosan (FACN) was successfully synthesized and characterized by 1H-NMR and is biocompatible. In vitro gene transfer potential of FACN was evaluated in human epithelial ovarian cancer OV2008 cells and human breast cancer MCF-7 cells. FACN at a weight ratio of 10 : 1 exhibited significantly (< 0.01) enhanced gene transfer potential in folate receptor-overexpressing cancer cells as compared to unmodified chitosan. Transfection of FACN/pDNA nanocomplexes is competitively inhibited by free folic acid, suggesting the specific gene delivery of FACN/pDNA nanocomplexes is achieved through folate receptor-mediated endocytosis. Taken together, these results demonstrate that FACN provides a promising carrier for cancer gene therapy.


Author(s):  
Ying Zhong ◽  
Naveen Kumar Bejjanki ◽  
Xiangwan Miao ◽  
Huanhuan Weng ◽  
Quanming Li ◽  
...  

Chemotherapy for the treatment of nasopharyngeal carcinoma (NPC) is usually associated with many side effects; therefore, its treatment options have not yet been completely resolved. Improving distribution to the targeted tumor region and enhancing the cellular uptake of drugs can efficiently alleviate the above adverse medical effects. Near-infrared (NIR) laser light-mediated photothermal therapy (PTT) and photodynamic therapy (PDT) are promising strategies for cancer treatment. In the present study, we developed an efficient multifunctional nanocluster with enhanced targeting and aggregation efficiency for PTT and PDT that is composed of a biocompatible folic acid (FA), indocyanine green (ICG) and 2-cyanobenzothiazole (CBT)-functionalized peptide labeled with an aldehyde sodium alginate-modified magnetic iron oxide nanoparticle (ASA-MNP)-based nanocarrier. FA can bind to folate receptors on cancer cell membranes to enhance nanocluster uptake. CBT-modified peptide can react with glutathione (GSH), which is typically present at higher levels in cancer cells, to form intracellular aggregates and increase the local concentration of the nanodrug. In in vitro studies, these nanodrugs displayed the desired uptake capacity by NPC cells and the ability to suppress the growth of cancer cells under laser irradiation. Animal studies validated that these nanodrugs are safe and nontoxic, efficiently accumulate in NPC tumor sites following injection via the caudal vein, and shows superior inhibition of tumor growth in a tumor-bearing mouse model upon near-infrared laser irradiation. The results indicate the potential application of the multifunctional nanoparticles (NPs), which can be used as a new method for the treatment of folate receptor-positive NPC.


Sign in / Sign up

Export Citation Format

Share Document