Experimental and Numerical Study on the Effect of Soot Injection on NOx Reduction and Radiation Enhancement in a Natural Gas Turbulent Flame

2012 ◽  
Vol 38 (1) ◽  
pp. 69-75 ◽  
Author(s):  
S. H. Pourhoseini ◽  
A. Saeedi ◽  
M. Moghiman
Author(s):  
Elizaveta Ivanova ◽  
Berthold Noll ◽  
Peter Griebel ◽  
Manfred Aigner ◽  
Khawar Syed

Turbulent mixing and autoignition of H2-rich fuels at relevant reheat combustor operating conditions are investigated in the present numerical study. The flow configuration under consideration is a fuel jet perpendicularly injected into a crossflow of hot flue gas (T > 1000K, p = 15bar). Based on the results of the experimental study for the same flow configuration and operating conditions two different fuel blends are chosen for the numerical simulations. The first fuel blend is a H2/natural gas/N2 mixture at which no autoignition events were observed in the experiments. The second fuel blend is a H2/N2 mixture at which autoignition in the mixing section occurred. First, the non-reacting flow simulations are performed for the H2/natural gas/N2 mixture in order to compare the accuracy of different turbulence modeling methods. Here the steady-state Reynolds-averaged Navier-Stokes (RANS) as well as the unsteady scale-adaptive simulation (SAS) turbulence modeling methods are applied. The velocity fields obtained in both simulations are directly validated against experimental data. The SAS method shows better agreement with the experimental results. In the second part of the present work the autoignition of the H2/N2 mixture is numerically studied using the 9-species 21-steps reaction mechanism of O’Conaire et al. [1]. As in the reference experiments, autoignition can be observed in the simulations. Influences of the turbulence modeling as well as of the hot flue gas temperature are investigated. The onset and the propagation of the ignition kernels are studied based on the SAS modeling results. The obtained numerical results are discussed and compared with data from experimental autoignition studies.


1985 ◽  
Vol 107 (3) ◽  
pp. 739-743 ◽  
Author(s):  
J. A. Mulholland ◽  
W. S. Lanier

A 730 kW (2.5 × 106 Btu/hr) firetube package boiler was used to demonstrate the application of reburning for NOx emission control. An overall reduction of 50 percent from an uncontrolled NOx emission of 200 ppm was realized by diverting 15 percent of the total boiler load to a natural-gas-fired second stage burner. Tests indicate that the overall reaction order of destruction with respect to initial NOx is greater than one; thus, larger reductions can be expected from reburning applications to systems with higher initial NOx. Rich zone stoichiometry has been identified as the dominant process variable. Primary zone stoichiometry and rich zone residence time are parameters that can be adjusted to maximize NOx reduction. Reburning applied to firetube package boilers requires minimal facility modification. Natural gas would appear to be an ideal reburning fuel as nitrogen in the reburning fuel has been shown to inhibit NOx reduction.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7556
Author(s):  
Maria Mitu ◽  
Domnina Razus ◽  
Volkmar Schroeder

The flammable hydrogen-blended methane–air and natural gas–air mixtures raise specific safety and environmental issues in the industry and transportation; therefore, their explosion characteristics such as the explosion limits, explosion pressures, and rates of pressure rise have significant importance from a safety point of view. At the same time, the laminar burning velocities are the most useful parameters for practical applications and in basic studies for the validation of reaction mechanisms and modeling turbulent combustion. In the present study, an experimental and numerical study of the effect of hydrogen addition on the laminar burning velocity (LBV) of methane–air and natural gas–air mixtures was conducted, using mixtures with equivalence ratios within 0.90 and 1.30 and various hydrogen fractions rH within 0.0 and 0.5. The experiments were performed in a 14 L spherical vessel with central ignition at ambient initial conditions. The LBVs were calculated from p(t) data, determined in accordance with EN 15967, by using only the early stage of flame propagation. The results show that hydrogen addition determines an increase in LBV for all examined binary flammable mixtures. The LBV variation versus the fraction of added hydrogen, rH, follows a linear trend only at moderate hydrogen fractions. The further increase in rH results in a stronger variation in LBV, as shown by both experimental and computed LBVs. Hydrogen addition significantly changes the thermal diffusivity of flammable CH4–air or NG–air mixtures, the rate of heat release, and the concentration of active radical species in the flame front and contribute, thus, to LBV variation.


Author(s):  
Usama J. Mizher ◽  
Peter A. Velmisov

Abstract. The search for new solutions in the field of energy, preventing negative impact on the environment, is one of the priority tasks for modern society. Natural gas occupies a stable position in the demand of the UES of Russia for fossil fuel. Biogas is a possible alternative fuel from organic waste. Biogas has an increased content of carbon dioxide, which affects the speed of flame propagation, and a lower content of methane, which reduces its heat of combustion. However, the combined combustion of natural gas and biogas, provided that the mixture of fuel and oxidizer is well mixed, can, on the one hand, reduce the maximum adiabatic temperature in the combustion chamber of power boilers at TPPs, and, on the other, increase the stability of biogas combustion. For the combined combustion of natural gas and biogas in operating power boilers, it is necessary to reconstruct the existing burners. For a high-quality reconstruction of burners capable of providing stable and low-toxic combustion of fuel, it is important to have theoretical data on the combustion effect of combustion of combinations of organic fuels on the temperature distribution in the combustion zone and on its maximum value. In this paper, self-similar solutions of the energy equation for axisymmetric motion of a liquid (gas) in a model of a viscous incompressible medium are obtained. Basing on them, a stationary temperature field in swirling jets is constructed. A set of programs based on the ANSYS Fluent software solver has been developed for modeling and researching of thermal and gas-dynamic processes in the combustion chamber. On the basis of the k - ϵ (realizable) turbulence model, the combustion process of a swirling fuel-air mixture is simulated. The results of an analytical and numerical study of the temperature and carbon dioxide distribution in the jet are presented.


Author(s):  
Joohan Kim ◽  
Riccardo Scarcelli ◽  
Sibendu Som ◽  
Ashish Shah ◽  
Munidhar Biruduganti ◽  
...  

Abstract Lean combustion in an internal combustion engine is a promising strategy to increase thermal efficiency by leveraging a more favorable specific heat ratio of the fresh mixture and simultaneously suppressing the heat losses to the cylinder wall. However, unstable ignition events and slow flame propagation at fuel-lean condition lead to high cycle-to-cycle variability and hence limit the high-efficiency engine operating range. Pre-chamber ignition is considered an effective concept to extend the lean operating limit, by providing spatially distributed ignition with multiple turbulent flame-jets and enabling faster combustion rate compared to the conventional spark ignition approach. From a numerical modeling perspective, to date, still the science base and available simulation tools are inadequate for understanding and predicting the combustion processes in pre-chamber ignited engines. In this paper, conceptually different RANS combustion models widely adopted in the engine modeling community were used to simulate the ignition and combustion processes in a medium-duty natural gas engine with a pre-chamber spark-ignition system. A flamelet-based turbulent combustion model, i.e., G-equation, and a multi-zone well-stirred reactor model were employed for the multi-dimensional study. Simulation results were compared with experimental data in terms of in-cylinder pressure and heat release rate. Finally, the analysis of the performance of the two models is carried out to highlight the strengths and limitations of the two formulations respectively.


Author(s):  
Mohamed Haddar ◽  
Moez Hammami ◽  
Mounir Baccar

In this paper, a study of cooling system for a liquefied natural gas storage tank is conducted. Our objective is to remedy the heat ingress to the liquefied natural gas from the environment using baffles toward limiting temperature elevation in the tank, and then the Boil-off Gas (BOG) formation. A specific code based on the finite volume method is developed to supply a fine knowledge of the hydrodynamic and thermal liquefied natural gas characteristics in the cylindrical tank heated from bottom and lateral surfaces. The effect of the number, position and dimension of baffles, on the flow structure and thermal behavior, has been analyzed. According to our simulation results, the baffles should be placed at the top of tank nearby the lateral wall as the liquefied natural gas dimensionless average temperature can be reduced by 36%. The installation of four rectangular baffles, equally spaced around the perimeter of the tank, gives better homogenization of the temperature field and decreases the average temperature by about 44% in order to limit BOG formation. Finally, two correlations of the Nusselt number are established for the flat rectangular baffle plates and the lateral surface of the cylindrical liquefied natural gas storage tank as a function of the Rayleigh number, as well as the baffle number. Scaling of these correlations with the Rayleigh number gives exponents of 0.25 and 0.18 for lateral surface and baffle, respectively, which are in good agreement with literature.


1989 ◽  
Vol 111 (3) ◽  
pp. 394-397 ◽  
Author(s):  
M. S. Hossain ◽  
M. Neyman ◽  
W. J. Cook ◽  
A. Z. Gordon

Solid-state electrochemical technology, embodied in the IGR process, is used to reduce nitrogen oxides (NOx) to nitrogen and oxygen, and thereby control NOx emissions from natural gas powered engines. The IGR deNOx process is based on solid-state, flow-through, high surface area, porous oxygen ion conductive ceramic electrolytes. Recent bench-scale experiments conducted for the Gas Research Institute have demonstrated NOx reduction in multicomponent gas streams, the inert portion of which simulate natural gas combustion products. The reduction products were analyzed by in situ gas chromatography to verify NOx reduction rates inferred from electrochemical measurements. IGR process advantages compared with existing NOx control technologies are reviewed.


Sign in / Sign up

Export Citation Format

Share Document