Preferential water uptake and differences in the anatomical structure of the distal end of grape berry may jointly lead to cracking in vitro soaking

Author(s):  
Chuan Zhang ◽  
Liwen Cui ◽  
Chonghuai Liu ◽  
Xiucai Fan ◽  
Jinggui Fang
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2302
Author(s):  
Qingwen Yu ◽  
Zhiyuan Meng ◽  
Yichao Liu ◽  
Zehao Li ◽  
Xing Sun ◽  
...  

After an osteosarcoma excision, recurrence and bone defects are significant challenges for clinicians. In this study, the curcumin (Cur) loaded chitosan (CS) nanoparticles (CCNP) encapsulated silk fibroin (SF)/hyaluronic acid esterified by methacrylate (HAMA) (CCNPs-SF/HAMA) hydrogel for the osteosarcoma therapy and bone regeneration was developed by photocuring and ethanol treatment. The micro or nanofibers networks were observed in the CCNPs-SF/HAMA hydrogel. The FTIR results demonstrated that alcohol vapor treatment caused an increase in β-sheets of SF, resulting in the high compression stress and Young’s modulus of CCNPs-SF/HAMA hydrogel. According to the water uptake analysis, SF caused a slight decrease in water uptake of CCNPs-SF/HAMA hydrogel while CCNPs could enhance the water uptake of it. The swelling kinetic results showed that both the CCNPs and the SF increased the swelling ratio of CCNPs-SF/HAMA hydrogel. The accumulative release profile of CCNPs-SF/HAMA hydrogel showed that the release of Cur from CCNPs-SF/HAMA hydrogel was accelerated when pH value was decreased from 7.4 to 5.5. Besides, compared with CCNPs, the CCNPs-SF/HAMA hydrogel had a more sustainable drug release, which was beneficial for the long-term treatment of osteosarcoma. In vitro assay results indicated that CCNPs-SF/HAMA hydrogel with equivalent Cur concentration of 150 μg/mL possessed both the effect of anti-cancer and promoting the proliferation of osteoblasts. These results suggest that CCNPs-SF/HAMA hydrogel with superior physical properties and the bifunctional osteosarcoma therapy and bone repair may be an excellent candidate for local cancer therapy and bone regeneration.


2000 ◽  
Vol 27 (3) ◽  
pp. 221 ◽  
Author(s):  
Paraskevi Diakou ◽  
Laurence Svanella ◽  
Philippe Raymond ◽  
Jean-Pierre Gaudillère ◽  
Annick Moing

The protein level and regulation of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31, involved in malic acid synthesis) was studied during the fruit development of two grape (Vitis vinifera L.) varieties, ‘Cabernet Sauvignon’ and ‘Gora Chirine’, with berries of normal and low organic acid content, respectively. The protein level and in vitro activity were higher in the low-acid variety than in the normal-acid variety for most stages. In vivo PEPC activity, measured using 14 CO2 labelling, was significantly higher in the low-acid variety than in the normal-acid variety about 1 week before and 1 week after veraison (the day which corresponds to the onset of ripening). However, partitioning into malate was the same for both varieties. Antibodies raised against the N-terminal part of SorghumPEPC recognised the grape berry PEPC, indicating the presence of the consensus phosphorylation site involved in PEPC regulation. PEPC phosphorylation status was estimated by studying sensitivity to pH and malate. Grape berry PEPC appeared more sensitive to low pH and malate during ripening (IC50 malate, 0.2–0.7 mM) compared to during the earlier stages of development (IC50 malate, 1.2–2 mM) for both varieties. Therefore, in the normal-acid variety, PEPC seems to participate in controlling malic acid accumulation but does not seem to control the differences in malic acid concentration observed between the two varieties.


2008 ◽  
Vol 399 ◽  
pp. 205-210
Author(s):  
Dan Ioan Stoia ◽  
Nicolae Faur ◽  
Mirela Toth-Taşcău ◽  
Laurenţiu Culea

The paper describes the biomechanical behavior of a cervical implanted unit (CIU) in two conditions: during the physiological and extreme loading. In order to reveal these behaviors, the anatomical structure composed by the C2 and C3 cervical vertebras was implanted using a plate-screws metal structure. The implant was design to perform dynamical, by allowing longitudinal, transversal and rotational movements. The physiological conditions were simulated by the pulsatory negative loading, while the extreme loading was simulated by the alternant symmetrical loading. The tests reveal two behaviors: the durability of the CIU in the physiological loading conditions and the failure of the structure under extreme load.


2008 ◽  
Vol 47-50 ◽  
pp. 1399-1402 ◽  
Author(s):  
Naznin Sultana ◽  
Min Wang

Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) was used to make composite scaffolds for bone tissue engineering in our previous studies. To control the degradation rate and process of composite scaffolds, PHBV was blended with poly(L-lactic acid) (PLLA), which has a much higher degradation rate than PHBV, and PHBV/PLLA blends were used as polymer matrices for composite scaffolds. Composite scaffolds based on these blends and containing nano-sized hydroxyapatite (nHA) were fabricated using an emulsion freezing / freeze-drying technique. Non-porous films of PHBV/PLLA blends were prepared using the solvent casting method. In vitro degradation tests of non-porous PHBV/PLLA blends and porous composite scaffolds were conducted by immersing samples in phosphate buffered saline (PBS) for various periods of time. It was found that the composition of polymer blends affected water uptake of films and scaffolds. For PHBV/PLLA-based scaffolds, the incorporated nHA particles also significantly increased water uptake within the initial immersion time. Both PHBV/PLLA blends and composite scaffolds underwent rapid weight losses within the first few weeks. The degradation of composite scaffolds arose from the dissolution of nHA particles and degradation of the PLLA component of polymer blends. Composite scaffolds exhibited enhanced adsorption of bovine serum albumin (BSA), a model protein, in the current study.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9376
Author(s):  
Huanhuan Gao ◽  
Xiangtian Yin ◽  
Xilong Jiang ◽  
Hongmei Shi ◽  
Yang Yang ◽  
...  

As a polymicrobial disease, sour rot decreases grape berry yield and wine quality. The diversity of microbial communities in sour rot-affected grapes depends on the cultivation site, but the microbes responsible for this disease in eastern coastal China, has not been reported. To identify the microbes that cause sour grape rot in this important grape-producing region, the diversity and abundance of bacteria and fungi were assessed by metagenomic analysis and cultivation-dependent techniques. A total of 15 bacteria and 10 fungi were isolated from sour rot-affected grapes. High-throughput sequencing of PCR-amplicons generated from diseased grapes revealed 1343 OTUs of bacteria and 1038 OTUs of fungi. Proteobacteria and Firmicutes were dominant phyla among the 19 bacterial phyla identified. Ascomycota was the dominant fungal phylum and the fungi Issatchenkia terricola, Colletotrichum viniferum, Hanseniaspora vineae, Saprochaete gigas, and Candida diversa represented the vast majority ofmicrobial species associated with sour rot-affected grapes. An in vitro spoilage assay confirmed that four of the isolated bacteria strains (two Cronobacter species, Serratia marcescens and Lysinibacillus fusiformis) and five of the isolated fungi strains (three Aspergillus species, Alternaria tenuissima, and Fusarium proliferatum) spoiled grapes. These microorganisms, which appear responsible for spoiling grapes in eastern China, appear closely related to microbes that cause this plant disease around the world.


Plant Omics ◽  
2018 ◽  
pp. 153-160
Author(s):  
Farnaz Tahoori ◽  
Ahamd Majd ◽  
Taher Nejadsattari ◽  
Hamideh Ofoghi ◽  
Alireza Iranbakhsh

Liquorice (Glycyrrhiza glabra L.) has been used worldwide as a medicine for a long time. In this research, the effect of silver nitrate (AgNO3) as a growth regulator and anti-ethylene in in vitro culture was investigated on growth and anatomical structure of vegetative organs (root, hypocotyl, shoot, leaf) as well as the number of stomata and trichomes in the leaves of liquorice under in vitro culture condition. The seeds were cultured in MS culture media containing different concentrations of AgNO3 (0, 2, 4, 8, and 10 mg L-1). Investigations on 20-day seedlings after three replications showed a significant increase in length and growth of roots, hypocotyls and shoots, and decreased number of stomata and trichomes in the samples treated with AgNO3 (P≤0.05). The effects of AgNO3 on anatomical structures of the organs included the increased cell division in root and shoot tips, reduced vascular tissues and sclerenchyma-fiber (with lignified cell walls), increased thickness of Casparian strip and cell walls of endodermis, reduced thickness of epidermis and increased intercellular spaces in mesophyll. The leaf area was measured in the 4-month plantlets, showing a significant increase in the samples treated with AgNO3. Furthermore, there was significant difference in increased leaf area applying 10 mg L-1 treatment and other concentrations as well as between the concentrations of 2 and 8 mg L-1. It seems that these results are due to the inhibitory effects of AgNO3 on the production and function of ethylene and the plant strategy to increase the tolerance against silver metal.


2003 ◽  
Vol 9 (4) ◽  
pp. 306-311 ◽  
Author(s):  
Assaf E. Sagiv ◽  
Yizhak Marcus
Keyword(s):  

2017 ◽  
Vol 56 (18) ◽  
pp. 10844-10847 ◽  
Author(s):  
Jufang Hu ◽  
Yanqing Xu ◽  
Dingkun Zhang ◽  
Baokuan Chen ◽  
Zhengguo Lin ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 485 ◽  
Author(s):  
Xiangyi Li ◽  
Lei He ◽  
Xiaohui An ◽  
Keji Yu ◽  
Nan Meng ◽  
...  

Glycosylated volatile precursors are important, particularly in wine grape berries, as they contribute to the final aroma in wines by releasing volatile aglycones during yeast fermentation and wine storage. Previous study demonstrated that VviGT14 was functioned as a critical monoterpene glucosyltransferase in grape berry, while the transcriptional regulation mechanism of VviGT14 was still unknown. Here we identified VviWRKY40 as a binding factor of VviGT14 promoter by both DNA pull-down and yeast one-hybrid screening, followed by a series of in vitro verification. VviWRKY40 expression pattern negatively correlated with that of VviGT14 in grape berries. And the suppressor role of VviWRKY40 was further confirmed by using the dual luciferase assay with Arabidopsis protoplast and grape cell suspension system. Furthermore, the grape suspension cell ABA treatment study showed that ABA downregulated VviWRKY40 transcript level but promoted that of VviGT14, indicating that VviWRKY40 was at the downstream of ABA signal transduction network to regulate monoterpenoid glycosylation. These data extend our knowledge of transcriptional regulation of VviGT14, and provide new targets for grape breeding to alter monoterpenoid composition.


Sign in / Sign up

Export Citation Format

Share Document