scholarly journals European beech, silver fir, and Norway spruce differ in establishment, height growth, and mortality rates on coarse woody debris and forest floor—a study from a mixed beech forest in the Western Carpathians

2015 ◽  
Vol 72 (7) ◽  
pp. 955-965 ◽  
Author(s):  
Olga Orman ◽  
Janusz Szewczyk
Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 823
Author(s):  
Anna Zielonka ◽  
Marek Drewnik ◽  
Łukasz Musielok ◽  
Marcin K. Dyderski ◽  
Dariusz Struzik ◽  
...  

Forest ecosystems significantly contribute to the global organic carbon (OC) pool, exhibiting high spatial heterogeneity in this respect. Some of the components of the OC pool in a forest (woody aboveground biomass (wAGB), coarse root biomass (CRB)) can be relatively easily estimated using readily available data from land observation and forest inventories, while some of the components of the OC pool are very difficult to determine (fine root biomass (FRB) and soil organic matter (SOM) stock). The main objectives of our study were to: (1) estimate the SOM stock; (2) estimate FRB; and (3) assess the relationship between both biotic (wAGB, forest age, foliage, stand density) and abiotic factors (climatic conditions, relief, soil properties) and SOM stocks and FRB in temperate forests in the Western Carpathians consisting of European beech, Norway spruce, and silver fir (32 forest inventory plots in total). We uncovered the highest wAGB in beech forests and highest SOM stocks under beech forest. FRB was the highest under fir forest. We noted a considerable impact of stand density on SOM stocks, particularly in beech and spruce forests. FRB content was mostly impacted by stand density only in beech forests without any discernible effects on other forest characteristics. We discovered significant impacts of relief-dependent factors and SOM stocks at all the studied sites. Our biomass and carbon models informed by more detailed environmental data led to reduce the uncertainty in over- and underestimation in Cambisols under beech, spruce, and fir forests for mountain temperate forest carbon pools.


2011 ◽  
Vol 7 (4) ◽  
pp. 168-173 ◽  
Author(s):  
A-Ram Yang ◽  
Nam Jin Noh ◽  
Sue Kyoung Lee ◽  
Tae Kyung Yoon ◽  
Choonsig Kim ◽  
...  

Author(s):  
J. Paluch ◽  
S. Keren ◽  
Z. Govedar

Abstract In this study, we analysed patterns of spatial variation in the basal area of live and dead trees and structural complexity in close-to-primeval forests in the Dinaric Mts. The results were compared with an analogous study conducted in the Western Carpathians. The research was carried out in the Janj, Lom and Perucića forest reserves (Bosnia and Herzegovina) in mixed-species stands of silver fir Abies alba Mill., European beech Fagus sylvatica L. and Norway spruce Picea abies (L.) H. Karst. In the core zones of the reserves, concentric sample plots (154 and 708 m2) were set in a regular 20 × 20 m grid covering approximately 10 ha. The analyses revealed varying distribution patterns of live canopy trees, suggesting that these characteristics may fluctuate to some extent at the regional level. At the spatial scale of 708 m2, attractive associations between dead canopy trees were found, but this tendency disappeared with increasing area. Although stands in the Dinaric Mts. are characterized by an almost twofold greater biomass accumulation compared to those from the Western Carpathians, the study revealed analogous bell-shaped distributions of stand basal areas of live trees and a very similar trend of decreasing variation in stand basal area and structural heterogeneity with increasing spatial scale. Nonetheless, the higher growing stocks, lower ratios of dead to live tree basal area and lower proportion of homogeneous structure types found in the Dinaric Mts. may suggest a less severe disturbance history over recent decades in this region compared to the Western Carpathians.


1994 ◽  
Vol 24 (7) ◽  
pp. 1317-1329 ◽  
Author(s):  
Brian C. McCarthy ◽  
Ronald R. Bailey

Coarse woody debris (CWD) is integral to the functioning and productivity of forested ecosystems. Standing snags and large logs on the forest floor affect soil processes, soil fertility, hydrology, and wildlife microhabitat. Few data are available pertaining to the distribution and abundance of CWD in the managed hardwood forests of the central Appalachians. We surveyed 11 stands, at various stages of development (succession) after clear-cutting (<2, 15–25, 65–90, >100 years old), to evaluate the density, volume, and biomass of trees, snags, and logs under the local forest management regime. As expected, density, volume, and biomass of CWD (stems ≥2.5 cm diameter) were greatest in young stands (<2 years old) immediately following clear-cutting; the vast majority of CWD existed as relatively labile, small-diameter, low decay state logging slash. Young stands retained a few large logs in advanced decay states but observations suggest that these elements were often disturbed (i.e., crushed) by logging equipment during the harvest process. Crushed logs do not function ecologically in the same capacity as large intact logs. A marked decline in CWD was observed in young pole stands (15–25 years old) as slash decomposed. These stands were characterized by a high density of young hardwood stump sprouts in the overstory while maintaining a moderate amount of CWD in middle size and decay states on the forest floor. More mature hardwood stands (65–90 years old) generally exhibited a decrease in live-stem density and an increase in basal area, accompanied by a slight increase in CWD. Commercial thinning presumably limits the contribution of large CWD to the forest floor. This was most clearly evident in the oldest stands (>100 years old) where large CWD was not widely observed. A striking feature across all stands was the near absence of logs in large size classes (>65 cm diameter) and a paucity of logs in mid to late decay stages. We discuss our data in the context of hardwood forest structure and management in the central Appalachians.


2006 ◽  
Vol 36 (2) ◽  
pp. 460-466 ◽  
Author(s):  
Leslie R Paul ◽  
Bill K Chapman ◽  
Christopher P Chanway

Tuberculate ectomycorrhizae (TEM) have been observed in decaying coarse woody debris (CWD) and may play a role in the nitrogen economy of forests. This study evaluates the occurrence of Suillus tomentosus (Kauff.) Singer, Snell and Dick TEM within CWD in Pinus contorta Dougl. ex Loud. var. latifolia Engelm. stands and relates their occurrence to CWD and soil characteristics as well as stand age. TEM were more abundant in the basal end of CWD incorporated in the forest floor than in the middle and top portions. Tubercle abundance was positively correlated with moisture and texture of CWD, degree of incorporation of CWD into the forest floor, and the amount of roots within CWD. There were significantly more TEM in CWD in young stands than in old stands and on sites with granitic soils than on sites with basaltic soils. Highly degraded CWD that is well incorporated in the forest floor appears to be an important microhabitat for the formation and occurrence of TEM.


2008 ◽  
Vol 38 (7) ◽  
pp. 1897-1910 ◽  
Author(s):  
I. A. Hood ◽  
P. N. Beets ◽  
J. F. Gardner ◽  
M. O. Kimberley ◽  
M. W.P. Power ◽  
...  

Fungi were isolated to determine the predominant decomposer species active in the coarse woody debris in a beech forest in the central North Island of New Zealand. Basidiomycetes were obtained in 55% of 4569 isolation attempts from discs cut from six trees each of Nothofagus fusca (Hook. F.) Oerst. and Nothofagus menziesii (Hook. F.) Oerst. uprooted during a storm 24 years earlier. Percentage yields varied significantly among trees but not between tree species. However, for N. fusca, basidiomycetes were obtained less frequently from stems of greater mean diameter. In total, 96% of basidiomycete isolates were composed of 18 species, the most abundant being Armillaria novae-zelandiae (G. Stev.) Herink, mainly present in the outer 12 cm, and Ganoderma cf. applanatum sensu Wakef. and Cyclomyces tabacinus (Mont.) Pat., which penetrated more deeply. These fungi were distributed along the stems as somatically incompatible colonies reaching lengths of 11, 2, and 3 m for each species, respectively; those of G. cf. applanatum were separated by brown pseudosclerotial plates. Fruiting of these species was significantly associated with isolation of cultures and, for G. cf. applanatum and C. tabacinus, provided a reliable guide to stem colonization. Basidiomycete diversity in the Nothofagus stems was greater than in two podocarp species in an earlier study. Data from this investigation are being used to assess how decay fungi, together with other factors, influence rates of decomposition of indigenous coarse woody debris.


2001 ◽  
Vol 115 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Roman Longauer ◽  
Dušan Gömöry ◽  
Ladislav Paule ◽  
David F Karnosky ◽  
Blanka Maňkovská ◽  
...  

1994 ◽  
Vol 24 (9) ◽  
pp. 1811-1817 ◽  
Author(s):  
James L. Marra ◽  
Robert L. Edmonds

Carbon dioxide evolution rates for downed logs (coarse woody debris) and the forest floor were measured in a temperate, old-growth rain forest in Olympic National Park, Washington, using the soda lime trap method. Measurements were taken every 4 weeks from October 22, 1991, to November 19, 1992. Respiration rates for Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) and western hemlock (Tsugaheterophylla (Raf.) Sarg.), logs were determined for decay classes 1–2, 3, and 5 in two diameter classes. Overall, western hemlock logs respired at a rate 35% higher (4.37 g CO2•m−2•day−1) than Douglas-fir logs (3.23 g CO2•m−2•day−1). Respiration rates for decay class 1–2 logs of both species were similar to decay class 5 logs (4.46 and 4.07 g CO2•m−2•day−1, respectively), but decay class 3 logs respired at a lower rate (3.23 g CO2•m−2•day−1). Seasonal patterns of respiration rates occurred, particularly for decay class 1 and 2 western hemlock logs where monthly averages ranged from a low of 2.67 g CO2•m−2•day−1 in February 1992 to a high of 8.30 g CO2•m−2•day−1 in September 1992. Rates for decay class 1–2 western hemlock logs were greater than those from the forest floor, which ranged from 3.42 to 7.13 g CO2•m−2•day−1. Respiration rates were depressed in late July and August compared with fall and spring owing to the summer drought characteristic of the Pacific Northwest. Large-diameter western hemlock logs in decay class 1–2 had higher respiration rates than small-diameter logs, whereas large-diameter decay class 3 western hemlock logs had lower respiration rates than small-diameter logs.


Sign in / Sign up

Export Citation Format

Share Document