scholarly journals Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics

2017 ◽  
Vol 48 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Young Hee Choi ◽  
Hyo-Kyung Han

Abstract Nanomedicines have evolved into various forms including dendrimers, nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles since their first launch in the market. Widely highlighted benefits of nanomedicines over conventional medicines include superior efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profiles of pharmaceutical ingredients. Especially, various kinetic characteristics of nanomedicines in body are further influenced by their formulations. This review provides an updated understanding of nanomedicines with respect to delivery and pharmacokinetics. It describes the process and advantages of the nanomedicines approved by FDA and EMA. New FDA and EMA guidelines will also be discussed. Based on the analysis of recent guidelines and approved nanomedicines, key issues in the future development of nanomedicines will be addressed.

Author(s):  
Amol Giri ◽  
Aijaz Sheikh ◽  
P R Tathe ◽  
G R Sitaphale ◽  
K R Biyani

In this present review this new approach of solid lipid Nanoparticles (SLNs) is discussed in terms of their aims, advantages, and disadvantages, methods of preparation, characterization and special features. In the state of developments in the research and development of new drug delivery systems have been made in Last decade by resolving various disorders, such as Low Drug Bioavailability and unpredictable gastric emptying era. Most of the active pharmaceutical ingredients are under poor bioavailability and also their solubility. By using the nanotechnology to overcome this problems of novel drug delivery system. The main advantage of nanotechnology i.e. solid lipid Nanoparticles increases the bioavailability and elimination biological half-life of the drugs. Solid lipid Nanoparticles are spherical lipid particles ranging in size from 1 to 1000 nm and are dispersed in water or in aqueous surfactant solution.


2020 ◽  
Vol 3 (2) ◽  
pp. 20-24
Author(s):  
Kavita Rani ◽  
Amit Kumar J. Raval ◽  
Dinesh Kaushik ◽  
Rajesh Khathuriya

Lipid nanocarriers are developed as an alternative to polymeric nanoparticles, liposomes and emulsions. NLCs are the second generation lipid carriers developed to overcome problems associated with Solid Lipid Nanoparticles and are utilized in various therapeutic approaches. NLCs were used for the delivery of lipophilic drugs .Biocompatible nature of lipids is responsible for its development as a good drug delivery. It was found to be having excellent characteristics over other lipid formulations.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 191 ◽  
Author(s):  
Vijay Mishra ◽  
Kuldeep Bansal ◽  
Asit Verma ◽  
Nishika Yadav ◽  
Sourav Thakur ◽  
...  

Solid lipid nanoparticles (SLNs) are nanocarriers developed as substitute colloidal drug delivery systems parallel to liposomes, lipid emulsions, polymeric nanoparticles, and so forth. Owing to their unique size dependent properties and ability to incorporate drugs, SLNs present an opportunity to build up new therapeutic prototypes for drug delivery and targeting. SLNs hold great potential for attaining the goal of targeted and controlled drug delivery, which currently draws the interest of researchers worldwide. The present review sheds light on different aspects of SLNs including fabrication and characterization techniques, formulation variables, routes of administration, surface modifications, toxicity, and biomedical applications.


Author(s):  
Narendar Dudhipala

This article describes the current state and future perspectives of solid lipid nanoparticles for achieving high delivery of drugs with greater therapeutic outcomes.  The oral route is the most preferred route of administration for majority of drugs. Problems such as poor solubility or chemical stability in the environment of the gastrointestinal tract, poor permeability through the biological membranes or sensitivity to metabolism are well known to result in the rejection of potential drug candidates as oral delivery products. Hence, lipid-based drug delivery systems have been proposed as a means of bypassing the resistant chemical or physical barriers associated with poorly absorbed drugs. Solid lipid nanoparticles (SLNs) can be an attractive one option for oral drug delivery vehicles as they hold tremendous potential to improve the oral bioavailability of drugs, concomitant reduction of drug toxicity and stability of drug in both GIT and plasma. SLNs are in submicron size range and are made of biocompatible and biodegradable materials capable of incorporating both lipophilic and hydrophilic drugs. SLNs are considered as substitute to other colloidal drug systems and are being used as controlled and targeted delivery systems. The SNL technology has greatly revolutionized the delivery systems for poorly soluble drugs. This article describes the methodologies used for preparation and characterization of SNLs.  It outlined the development of stable solid lipid nanoparticles by different techniques. Further, it describes the current status of pharmacokinetic and pharmaco-dynamic studies reported on SLN systems. Finally, it provides a brief outlook on current marketed preparation and the future scope of SLN technology.


Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2016 ◽  
Vol 12 (5) ◽  
pp. 598-604 ◽  
Author(s):  
Tatiana N. Pashirova ◽  
Tatiana Andreani ◽  
Ana S. Macedo ◽  
Eliana B. Souto ◽  
Lucia Ya. Zakharova

Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 359
Author(s):  
Thai Thanh Hoang Thi ◽  
Estelle J. A. Suys ◽  
Jung Seok Lee ◽  
Dai Hai Nguyen ◽  
Ki Dong Park ◽  
...  

COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document