scholarly journals The investigation of the microstructure behavior of the spray distances and argon gas flow rates effects on the aluminum coating using self-generated atmospheric plasma spray system

2017 ◽  
Vol 11 (3) ◽  
pp. 225-234 ◽  
Author(s):  
Sh. Khandanjou ◽  
M. Ghoranneviss ◽  
Sh. Saviz
2016 ◽  
Vol 1812 ◽  
pp. 53-64
Author(s):  
E. Bautista Pérez ◽  
C.E. Cruz ◽  
Juan M. Salgado Lopez ◽  
J.A. Toscano

ABSTRACTIn this work, the effect of three principal and independent parameters of Atmospheric Plasma Spray on the properties of coatings deposited using mixtures of commercial powders of titanium dioxide (TiO2) and chromium oxide (Cr2O3) was studied. The results of this work are used for special applications on turbomachinery components such as wear protection in sliding seals and in steam valves for turbines, chemical protection for centrifugal compressor members, and special seal applications.The design of experiments (DoE) technique has proved to be very useful to study the influence factors and optimization. Pierlot et al. [1] demonstrated that the application of the Hadamard and two factorial design techniques are useful for the optimization of thermal spray processes. An example of the application of the DoE is the one mentioned by Murugan et al. [2]. In their work, a factorial design was used to study the interactions between gas flow, oxygen flow, powder rate and spray distance on the percentage of porosity and hardness of TiO2 - Cr2O3 composite coatings generated by High Velocity Oxy-Fuel.The ½ fractional two-level factorial DoE technique was used to analyze and optimize the Atmospheric Plasma Spray process parameters. In the current research, experiments were conducted varying the deposition velocity, gas flow and stand-off distance. The effect of these process variables were evaluated by thickness, hardness and microstructure analysis. In this study, an empirical relationship between process variables and response parameters was developed. The entire relationship was made using the results of the DoE.


2014 ◽  
Vol 602-603 ◽  
pp. 552-555
Author(s):  
Dan Lu ◽  
Ya Ran Niu ◽  
Xue Lian Ge ◽  
Xue Bing Zheng ◽  
Guang Chen

In this work, atmospheric plasma spray (APS) technology was applied to fabricate ZrC-W composite coatings. The microstructure of the composite coatings was characterized. The influence of W content on the ablation-resistant and thermal shock properties of ZrC-W composite coatings was evaluated using a plasma flame. The results show that the ZrC-W composite coatings had typically lamellar microstructure, which was mainly made up of cubic ZrC, cubic W and a small amount of tetragonal ZrO2. The ZrC-W coatings had improved ablation resistant and thermal shock properties compared with those of the pure ZrC coating. It was supposed that the improved density, thermal conductivity and toughness of the composite coatings contributed to this phenomenon.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 759
Author(s):  
Duy Quang Pham ◽  
Christopher C. Berndt ◽  
Ameneh Sadeghpour ◽  
Hala Zreiqat ◽  
Peng-Yuan Wang ◽  
...  

In this work, we measured the mechanical properties and tested the cell viability of a bioceramic coating, strontium–hardystonite–gahnite (Sr–HT–G, Sr–Ca2ZnSi2O7–ZnAl2O4), to evaluate potential use of this novel bioceramic for bone regeneration applications. The evaluation of Sr–HT–G coatings deposited via atmospheric plasma spray (APS) onto Ti–6Al–4V substrates have been contrasted to the properties of the well-known commercial standard coating of hydroxyapatite (HAp: Ca10(PO4)6(OH)2). The Sr–HT–G coating exhibited uniform distribution of hardness and elastic moduli across its cross-section; whereas the HAp coating presented large statistical variations of these distributions. The Sr–HT–G coating also revealed higher results of microhardness, nanohardness and elastic moduli than those shown for the HAp coating. The nanoscratch tests for the Sr–HT–G coating presented a low volume of material removal without high plastic deformation, while the HAp coating revealed ploughing behaviour with a large pileup of materials and plastic deformation along the scratch direction. Furthermore, nanoscanning wear tests indicated that Sr–HT–G had a lower wear volume than the HAp coating. The Sr–HT–G coating had slightly higher cell attachment density and spreading area compared to the HAp coating indicating that both coatings have good biocompatibility for bone marrow mesenchymal stem cells (BMSCs).


Sign in / Sign up

Export Citation Format

Share Document