scholarly journals Mechanical Properties of Strontium–Hardystonite–Gahnite Coating Formed by Atmospheric Plasma Spray

Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 759
Author(s):  
Duy Quang Pham ◽  
Christopher C. Berndt ◽  
Ameneh Sadeghpour ◽  
Hala Zreiqat ◽  
Peng-Yuan Wang ◽  
...  

In this work, we measured the mechanical properties and tested the cell viability of a bioceramic coating, strontium–hardystonite–gahnite (Sr–HT–G, Sr–Ca2ZnSi2O7–ZnAl2O4), to evaluate potential use of this novel bioceramic for bone regeneration applications. The evaluation of Sr–HT–G coatings deposited via atmospheric plasma spray (APS) onto Ti–6Al–4V substrates have been contrasted to the properties of the well-known commercial standard coating of hydroxyapatite (HAp: Ca10(PO4)6(OH)2). The Sr–HT–G coating exhibited uniform distribution of hardness and elastic moduli across its cross-section; whereas the HAp coating presented large statistical variations of these distributions. The Sr–HT–G coating also revealed higher results of microhardness, nanohardness and elastic moduli than those shown for the HAp coating. The nanoscratch tests for the Sr–HT–G coating presented a low volume of material removal without high plastic deformation, while the HAp coating revealed ploughing behaviour with a large pileup of materials and plastic deformation along the scratch direction. Furthermore, nanoscanning wear tests indicated that Sr–HT–G had a lower wear volume than the HAp coating. The Sr–HT–G coating had slightly higher cell attachment density and spreading area compared to the HAp coating indicating that both coatings have good biocompatibility for bone marrow mesenchymal stem cells (BMSCs).

2019 ◽  
Vol 58 (1) ◽  
pp. 75-81
Author(s):  
Mihailo Mrdak ◽  
Bojan Medjo ◽  
Darko Veljić ◽  
Miodrag Arsić ◽  
Marko Rakin

Abstract In this paper, structural and mechanical properties of APS - atmospheric plasma spray coating Al-12Si are presented. The aim of the research was the optimisation of the flow of powder to produce layers with optimal mechanical and structural properties that will be applied to the worn out parts of airplanes. Three groups of samples were produced, by utilising three powder feed rates: 30 g/min, 45 g/min and 60 g/min. Evaluation of layers’ microhardness was done using HV0.3 method and the bond strengthwas determined by testing of tensile strength. Surface morphology of the deposited powder particles was examined on SEM (Scanning Electron Microscope). The microstructure of the coating with the best measured mechanical properties was subsequently examined in etched condition on optical microscope and SEM (in accordance with the standard PN 585005, Pratt & Whitney). Also, fracture morphology of this coating in deposited state was examined using SEM. It was found that powder feed control with atmospheric plasma spraying can produce dense layers of Al-12Si coating with good bond strength.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 612
Author(s):  
Miriam Lorenzo-Bañuelos ◽  
Andrés Díaz ◽  
David Rodríguez ◽  
Isidoro I. Cuesta ◽  
Adrian Fernández ◽  
...  

Thermal spray is one of the most widely used coating techniques to improve wear, surface fatigue or corrosion properties. In the atmospheric plasma spray (APS) process, a powdered material is melted by hydrogen and argon combustion and is propelled at high speed onto the target substrate. The high impact energy of the particles produces a dense and resistant coating layer. Mechanical and surface properties of the obtained coating depend on various spraying parameters, such as gas flow, traverse speed and spraying distance, among others. In this research, the influence of these manufacturing parameters on the thickness, hardness and resistance of the coating obtained from a Ni-Al alloy sprayed onto an aluminum alloy substrate was studied. In order to analyze the effect of these parameters on the coating properties, an extensive experimental program was carried out. A metallographic analysis, hardness and strength measurements were carried out using the small punch test to locally study the mechanical properties of the coating surface. The design of experiments and the response surface methodology facilitate the assessment of the optimal set of spraying parameters.


2014 ◽  
Vol 602-603 ◽  
pp. 552-555
Author(s):  
Dan Lu ◽  
Ya Ran Niu ◽  
Xue Lian Ge ◽  
Xue Bing Zheng ◽  
Guang Chen

In this work, atmospheric plasma spray (APS) technology was applied to fabricate ZrC-W composite coatings. The microstructure of the composite coatings was characterized. The influence of W content on the ablation-resistant and thermal shock properties of ZrC-W composite coatings was evaluated using a plasma flame. The results show that the ZrC-W composite coatings had typically lamellar microstructure, which was mainly made up of cubic ZrC, cubic W and a small amount of tetragonal ZrO2. The ZrC-W coatings had improved ablation resistant and thermal shock properties compared with those of the pure ZrC coating. It was supposed that the improved density, thermal conductivity and toughness of the composite coatings contributed to this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document