Bifidobacterium-bifidum/bifidobacterium-breve/bifidobacterium-infantis/bifidobacterium-longum/lactobacillus-rhamnosus

2021 ◽  
Vol 1857 (1) ◽  
pp. 76-76
2019 ◽  
Vol 7 (9) ◽  
pp. 340 ◽  
Author(s):  
Takuma Sakurai ◽  
Toshitaka Odamaki ◽  
Jin-zhong Xiao

Recent studies have shown that metabolites produced by microbes can be considered as mediators of host-microbial interactions. In this study, we examined the production of tryptophan metabolites by Bifidobacterium strains found in the gastrointestinal tracts of humans and other animals. Indole-3-lactic acid (ILA) was the only tryptophan metabolite produced in bifidobacteria culture supernatants. No others, including indole-3-propionic acid, indole-3-acetic acid, and indole-3-aldehyde, were produced. Strains of bifidobacterial species commonly isolated from the intestines of human infants, such as Bifidobacterium longum subsp. longum, Bifidobacterium longum subsp. infantis, Bifidobacterium breve, and Bifidobacterium bifidum, produced higher levels of ILA than did strains of other species. These results imply that infant-type bifidobacteria might play a specific role in host–microbial cross-talk by producing ILA in human infants.


Author(s):  
E. A. Kashukh ◽  
E. A. Poluektova ◽  
A. V. Kudryavtseva ◽  
G. S. Krasnov ◽  
V. I. Kazey ◽  
...  

Aim. To assess the effect of rifaximin and a multi-strain probiotic on the intestinal microbiome and the indicators of cardiovascular risk in patients with coronary heart disease (CHD).Materials and methods. A study conducted during the 2016–2019 period included 120 people over 50 years old divided into 3 groups. Group 1 comprised patients with coronary heart disease receiving standard treatment. Group 2 comprised patients with coronary heart disease receiving additionally a probiotic (Bifidobacterium bifidum no less than 1x109 CFU; Bifidobacterium longum no less than 1x109 CFU; Bifidobacterium infantis no less than 1x109 CFU; Lactobacillus rhamnosus no less than 1x109 CFU) within 28 days. Group 3 comprised CHD patients receiving rifaximin for 7 days followed by addition of the multi-strain probiotic under test for 21 days. Group 4 consisted of healthy individuals, comparable in age and sex with the examined CHD patients. In group 4, blood and stool tests were performed once to provide a comparison with group 1. TMAO concentration was determined using liquid chromatography–mass spectrometry. To study the composition of fecal microflora, 16S sequencing was used followed by a graphical representation of the results. The results were analysed using the IBM SPSS 22.0 statistical data processing software.Results. An additional administration of the probiotic (Bifidobacterium bifidum no less than 1x109 CFU; Bifidobacterium longum no less than 1x109 CFU; Bifidobacterium infantis no less than 1x109 CFU; Lactobacillus rhamnosus no less than 1x109 CFU) is found to have no effect on the lipid profile and the platelet aggregation rate. Rifaximin therapy reduced the amount of total cholesterol, low density lipoproteins (LDL), very low density (VLDL) lipoproteins and triglycerides (p <0.05), although not affecting the level of high density lipoproteins (HDL). TMAO showed a statistically insignificant (p>0.05) downward trend in all groups. The composition of the fecal microbiota, at the end of administration of the probiotic, showed an increase in the proportion of bacteria of the Streptococcaceae, Lactobacillaceae, Enterobacteriaceae families and a decrease in the Ruminococcaceae family (p>0.05). After rifaximin therapy, a decrease in the proportion of bacteria of the Clostridiaceae (p <0.05) and Peptostreptococcaceae (p <0.05) families, a decrease in Enterobacteriaceae (p > 0.05) family and a decrease in the Clostridium and Escherichia/Shigella (p > 0.05) genera was observed. The use of the probiotic after a course of treatment with rifaximin did not have a significant effect on the composition of the microflora. In general, the high variability of fecal microbiota between different patients (significantly superior to intergroup differences) does not allow us to draw unambiguous conclusions.Conclusions. The use of a multi-strain probiotic as an additional therapy in patients with coronary heart disease within 28 days did not have a significant effect on lipid metabolism, TMAO level and the composition of fecal microflora. The consecutive use of rifaximin and the probiotic had a beneficial effect on such factors as lipid metabolism (decrease in the level of total cholesterol, LDL, VLDL, triglycerides), but did not affect the concentration of TMAO and the composition of the intestinal microflora in patients with coronary heart disease.


2005 ◽  
Vol 71 (8) ◽  
pp. 4233-4240 ◽  
Author(s):  
Paola Lavermicocca ◽  
Francesca Valerio ◽  
Stella Lisa Lonigro ◽  
Maria De Angelis ◽  
Lorenzo Morelli ◽  
...  

ABSTRACT With the aim of developing new functional foods, a traditional product, the table olive, was used as a vehicle for incorporating probiotic bacterial species. Survival on table olives of Lactobacillus rhamnosus (three strains), Lactobacillus paracasei (two strains), Bifidobacterium bifidum (one strain), and Bifidobacterium longum (one strain) at room temperature was investigated. The results obtained using a selected olive sample demonstrated that bifidobacteria and one strain of L. rhamnosus (Lactobacillus GG) showed a good survival rate, with a recovery of about 106 CFU g−1 after 30 days. The Lactobacillus GG population remained unvaried until the end of the experiment, while a slight decline (to about 105 CFU g−1) was observed for bifidobacteria. High viability, with more than 107 CFU g−1, was observed throughout the 3-month experiment for L. paracasei IMPC2.1. This strain, selected for its potential probiotic characteristics and for its lengthy survival on olives, was used to validate table olives as a carrier for transporting bacterial cells into the human gastrointestinal tract. L. paracasei IMPC2.1 was recovered from fecal samples in four out of five volunteers fed 10 to 15 olives per day carrying about 109 to 1010 viable cells for 10 days.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1999
Author(s):  
Barbara Skrzydło-Radomańska ◽  
Beata Prozorow-Król ◽  
Halina Cichoż-Lach ◽  
Emilia Majsiak ◽  
Joanna B. Bierła ◽  
...  

The purpose of the randomized double-blind placebo-controlled trial was to assess the effectiveness of synbiotic preparation containing probiotic Lactobacillus rhamnosus FloraActive™ 19070-2, Lactobacillus acidophilus DSMZ 32418, Bifidobacterium lactis DSMZ 32269, Bifidobacterium longum DSMZ 32946, Bifidobacterium bifidum DSMZ 32403 and fructooligosaccharides in adult patients with diarrhea-dominant IBS (IBS-D). The study included eighty patients with moderate and severe IBS-D who were randomized to receive synbiotics or placebo for eight weeks. Finally, a total of sixty-eight patients finished the study. The primary endpoints included the assessment of the symptoms’ severity with IBS symptom severity scale (IBS-SSS), an improvement of IBS global symptoms with Global Improvement Scale (IBS-GIS) and adequate relief of symptoms after four and eight weeks of therapy. Secondary endpoints, which were collected by telephone interviewers three times a week included the assessment of individual IBS symptoms and adverse events. Synbiotic treatment in comparison to placebo significantly improved IBS-GIS (p = 0.043), and IBS-SSS score inducing a decrease in the total IBS-SSS (p = 0.042) and in domain-specific scores related to flatulence (p = 0.028) and bowel habit (p = 0.028) after four and eight weeks. Patients treated with synbiotics reported in weekly observations a significant amelioration in a feeling of incomplete bowel movements, flatulence, pain, stool pressure and diarrheal stools compared to those receiving placebo. There were no differences in adverse events between both groups. Concluding, the multi-strain synbiotic preparation was associated with a significant improvement in symptoms in IBS-D patients and was well-tolerated. These results suggest that the use of synbiotics offers a benefit for IBS-D patients. [Clinicaltrials.gov NCT04206410 registered 20 December 2019].


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Amro Abdelazez ◽  
Zafarullah Muhammad ◽  
Qiu-Xue Zhang ◽  
Zong-Tao Zhu ◽  
Heba Abdelmotaal ◽  
...  

Frozen dairy products have characteristics of both yogurt and ice cream and could be the persuasive carriers of probiotics. Functions of the frozen yogurt containing viable bifidobacterial cells are recognized and favored by the people of all ages. We developed a kind of yogurt supplemented by Bifidobacterium species. Firstly, five strains of Bifidobacterium spp. (Bifidobacterium bifidum ATCC 11547, Bifidobacterium longum ATCC 11549, Bifidobacterium infantis ATCC 11551, Bifidobacterium adolescentis ATCC 11550, and Bifidobacterium breve ATCC 11548) were evaluated based on the feasibility criteria of probiotics, comprising acid production, bile tolerance, and adhesion to epithelial cells. Formerly, we combined the optimum strains with yogurt culture (Lactobacillus delbrueckii subsp. bulgaricus EMCC 11102 and Streptococcus salivarius subsp. thermophilus EMCC 11044) for producing frozen yogurt. Finally, physiochemical properties and sensory evaluation of the frozen yogurt were investigated during storage of 60 days at −18°C. Results directed that Bifidobacterium adolescentis ATCC 11550 and Bifidobacterium infantis ATCC 11551 could be utilized with yogurt culture for producing frozen yogurt. Moreover, the frozen yogurt fermented by two bifidobacterial strains and yogurt culture gained the high evaluation in the physiochemical properties and sensory evaluation. In summary, our results revealed that there was no significant difference between frozen yogurt fermented by Bifidobacterium spp. and yogurt culture and that fermented by yogurt culture only.


Infectio ro ◽  
2018 ◽  
Vol 56 (4) (1) ◽  
pp. 9-21
Author(s):  
Ștefan-Sorin Aramă

Irritable bowel syndrome is a frequent digestive condition, with an unclear etiopathogeny. Very probably intestinal dysbiosis plays an important role. For the moment there are no guidelines for treatment. There is scientific evidence for several therapies: modification of diet, non-resorbable antibiotics (rifaximin-α) and probiotics. Giving probiotics after each antibiotic course (an association of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001) supplemented with vitamin B6 may be an optimal strategy.


2020 ◽  
Author(s):  
Ian Sims ◽  
GW Tannock

Copyright © 2020 American Society for Microbiology. Bifidobacterial species are common inhabitants of the gut of human infants during the period when milk is a major component of the diet. Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium longum subspecies longum, and B. longum subspecies infantis have been detected frequently in infant feces, but B. longum subsp. infantis may be disadvantaged numerically in the gut of infants in westernized countries. This may be due to the different durations of breast milk feeding in different countries. Supplementation of the infant diet or replacement of breast milk using formula feeds is common in Western countries. Formula milks often contain galacto- and/or fructo-oligosaccharides (GOS and FOS, respectively) as additives to augment the concentration of oligosaccharides in ruminant milks, but the ability of B. longum subsp. infantis to utilize these potential growth substrates when they are in competition with other bifidobacterial species is unknown. We compared the growth and oligosaccharide utilization of GOS and FOS by bifidobacterial species in pure culture and coculture. Short-chain GOS and FOS (degrees of polymerization [DP] 2 and 3) were favored growth substrates for strains of B. bifidum and B. longum subsp. longum, whereas both B. breve and B. longum subsp. infantis had the ability to utilize both short- and longer-chain GOS and FOS (DP 2 to 6). B. breve was nevertheless numerically dominant over B. longum subsp. infantis in cocultures. This was probably related to the slower use of GOS of DP 3 by B. longum subsp. infantis, indicating that the kinetics of substrate utilization is an important ecological factor in the assemblage of gut communities.IMPORTANCE The kinds of bacteria that form the collection of microbes (the microbiota) in the gut of human infants may influence health and well-being. Knowledge of how the composition of the infant diet influences the assemblage of the bacterial collection is therefore important because dietary interventions may offer opportunities to alter the microbiota with the aim of improving health. Bifidobacterium longum subspecies infantis is a well-known bacterial species, but under modern child-rearing conditions it may be disadvantaged in the gut. Modern formula milks often contain particular oligosaccharide additives that are generally considered to support bifidobacterial growth. However, studies of the ability of various bifidobacterial species to grow together in the presence of these oligosaccharides have not been conducted. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of human nutrition on the development of the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document