scholarly journals Comprehensive Application of Graphene: Emphasis on Biomedical Concerns

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Syama ◽  
P. V. Mohanan

Abstract Graphene, sp2 hybridized carbon framework of one atom thickness, is reputed as the strongest material to date. It has marked its impact in manifold applications including electronics, sensors, composites, and catalysis. Current state-of-the-art graphene research revolves around its biomedical applications. The two-dimensional (2D) planar structure of graphene provides a large surface area for loading drugs/biomolecules and the possibility of conjugating fluorescent dyes for bioimaging. The high near-infrared absorbance makes graphene ideal for photothermal therapy. Henceforth, graphene turns out to be a reliable multifunctional material for use in diagnosis and treatment. It exhibits antibacterial property by directly interacting with the cell membrane. Potential application of graphene as a scaffold for the attachment and proliferation of stem cells and neuronal cells is captivating in a tissue regeneration scenario. Fabrication of 2D graphene into a 3D structure is made possible with the help of 3D printing, a revolutionary technology having promising applications in tissue and organ engineering. However, apart from its advantageous application scope, use of graphene raises toxicity concerns. Several reports have confirmed the potential toxicity of graphene and its derivatives, and the inconsistency may be due to the lack of standardized consensus protocols. The present review focuses on the hidden facts of graphene and its biomedical application, with special emphasis on drug delivery, biosensing, bioimaging, antibacterial, tissue engineering, and 3D printing applications.

2012 ◽  
Vol 07 (03n04) ◽  
pp. 121-134 ◽  
Author(s):  
GUILI LIU ◽  
RUIBO ZHONG ◽  
RUISHENG HU ◽  
FENG ZHANG

(Ionic liquids) ILs have unique properties compared with conventional solvents, opening a wide range of application as solvents and catalysts. ILs' cytotoxicity extend their application in biomedicine by acting as antimicrobial and anticancer agents. This article reviews the current research advances of ILs' biomedical application from the following four aspects: solvents, catalysts, antimicrobial and anticancer agents. By introducing ILs' interesting structures and their corresponding unique properties, this review concludes the current state-of-art of ILs biomedical applications. We also try to point out the ILs issues and solutions for more potential applications in biomedicine.


2019 ◽  
Vol 9 (7) ◽  
pp. 922-928
Author(s):  
Haiguang Zhang ◽  
BaoQuan Qi ◽  
Qingxi Hu ◽  
Biao Yan ◽  
Dali Liu ◽  
...  

Carbon fibers are excellent materials for engineering biomedical materials and devices owing to their functional properties of low weight, high strength, high chemical and thermal stability, and blood and cell compatibility. Recent studies have demonstrated that the carbon fibers could be used as a scaffolding system for bone repair and regenerative application. However, carbon fiber-based composite products lack the long-term retention of their biological property upon implantation, which greatly affects their wider biomedical applications. In this study, design and fabrication of carbon fibers composite scaffolds using a fast 3D printing technology has been successfully realized, which provides a new direction for the biomedical application of carbon fiber composite materials.


2019 ◽  
Vol 29 (3) ◽  
pp. 613-621 ◽  
Author(s):  
Emma C Rossi

Sentinel lymph node (SLN) biopsy has been investigated as an alternative to conventional pelvic and para-aorticlymphadenectomy for the surgical staging of endometrial cancer. Clinical trials have established the accuracy of sentinel nodes in the detecting metastatic disease. Novel advancements in tracers from the historically favored blue dyes and radio labeled colloids to near infrared imaging of fluorescent dyes has improved the ability to detect sentinel nodes and increased options for surgeons. The uterine cervix has been shown to be a feasible and accurate injection site for tracer, though the potential for under-evaluation of the para-aortic nodes remains a controversy, particularly for high-risk cancers. Additionally, sentinel node evaluation provides qualitatively different information than traditional staging techniques by identifying lymph nodes outside of traditional sampling locations and through the identification of very low volume meta static disease implants, such as isolated tumor cells. It is unclear how this altered staging information should be interpreted, guide the prescription of adjuvant therapy and its impact on long term clinical outcomes such as recurrence and survival. In this review we will discuss the evidence that has supported the use of the SLN technique in the staging of endometrial cancer, the options for surgical technique and the implications of managing the results of staging pathology.


2015 ◽  
Vol 1786 ◽  
pp. 1-6 ◽  
Author(s):  
Aneshkumar Tilwani ◽  
Hildegarde Bell ◽  
Jose Alvarez ◽  
Belqais Naqshbandi ◽  
Folarin Erogbogbo

ABSTRACTGraphene Quantum Dots (GQDs) are of interest to the biomedical community due to their unique fluorescence properties, which may be advantageous for biology and medicine. Advantages of this graphene nanomaterial over fluorescent dyes for biomedical imaging include bright emission, easy surface modification, biocompatibility, and anticipated low toxicity. We hypothesize that GQDs with desirable fluorescence properties which can be used for effective biomedical imaging (such as near infrared emission) may be synthesized from cheap carbon sources. Here, we show that these fluorescent GQDs are fabricated in a facile wet chemistry route using activated charcoal as the starting material. The GQDs were characterized with AFM, TEM, FTIR, PL spectroscopy, Raman spectroscopy and animal imaging techniques. The particles were visible in animals indicating their potential for biomedical imaging. The GQDs exhibited excitation that spanned the UV and visible ranges and emission that spanned the visible and near infrared ranges. The GQDs were an average of 4 nm in height, crystalline, from 1 to 60 nm in size. The GQDs were consistent with the presence of graphene and the following functional groups: C-O, C-H, C=C, and CO2H. In conclusion, GQDs with favorable photophysical properties can be produced from affordable and widely available raw materials for imaging and other biomedical application purposes.


2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2020 ◽  
Vol 27 (28) ◽  
pp. 4622-4646 ◽  
Author(s):  
Huayu Liu ◽  
Kun Liu ◽  
Xiao Han ◽  
Hongxiang Xie ◽  
Chuanling Si ◽  
...  

Background: Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics, which make them widely used in many fields. This review aims to introduce the preparation of CNFs-based hydrogels and their recent biomedical application advances. Methods: By searching the recent literatures, we have summarized the preparation methods of CNFs, including mechanical methods and chemical mechanical methods, and also introduced the fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels, including scaffold materials and wound dressings. Results: CNFs-based hydrogels are new types of materials that are non-toxic and display a certain mechanical strength. In the tissue scaffold application, they can provide a micro-environment for the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound surface and protect the wound from the external environment, thereby effectively promoting the healing of skin tissue. Conclusion: By summarizing the preparation and application of CNFs-based hydrogels, we have analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels is still in the laboratory stage. It needs further exploration to be applied in practice. The development of medical hydrogels with high mechanical properties and biocompatibility still poses significant challenges.


Author(s):  
Geetanjali Singh ◽  
Pramod Kumar Sharma ◽  
Rishabha Malviya

Aim/Objective: The author writes the manuscript by reviewing the literatures related to the biomedical application of metallic nanoparticles. The term metal nanoparticles are used to describe the nanosized metals with the dimension within the size range of 1-100 nm. Methods: The preparation of metallic nanoparticles and their application is an influential area for research. Among various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles, biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles is having many problems inclusive of solvent toxicity, the formation of hazardous byproducts and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. Results: From the literature survey, we concluded that metallic nanoparticles have applications in the treatment of different diseases. Metallic nanoparticles are having a great advantage in the detection of cancer, diagnosis, and therapy. And it can also have properties such as antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic. Conclusion: In this review, recent upcoming advancement of biomedical application of nanotechnology and their future challenges has been discussed.


2021 ◽  
Vol 260 ◽  
pp. 117768
Author(s):  
Mina Rajabi ◽  
Michelle McConnell ◽  
Jaydee Cabral ◽  
M. Azam Ali

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Orlando Donoso-González ◽  
Lucas Lodeiro ◽  
Álvaro E. Aliaga ◽  
Miguel A. Laguna-Bercero ◽  
Soledad Bollo ◽  
...  

Gold nanostars (AuNSs) exhibit modulated plasmon resonance and have a high SERS enhancement factor. However, their low colloidal stability limits their biomedical application as a nanomaterial. Cationic β-cyclodextrin-based polymer (CCD/P) has low cytotoxicity, can load and transport drugs more efficiently than the corresponding monomeric form, and has an appropriate cationic group to stabilize gold nanoparticles. In this work, we functionalized AuNSs with CCD/P to load phenylethylamine (PhEA) and piperine (PIP) and evaluated SERS-based applications of the products. PhEA and PIP were included in the polymer and used to functionalize AuNSs, forming a new AuNS-CCD/P-PhEA-PIP nanosystem. The system was characterized by UV–VIS, IR, and NMR spectroscopy, TGA, SPR, DLS, zeta potential analysis, FE-SEM, and TEM. Additionally, Raman optical activity, SERS analysis and complementary theoretical studies were used for characterization. Minor adjustments increased the colloidal stability of AuNSs. The loading capacity of the CCD/P with PhEA-PIP was 95 ± 7%. The physicochemical parameters of the AuNS-CCD/P-PhEA-PIP system, such as size and Z potential, are suitable for potential biomedical applications Raman and SERS studies were used to monitor PhEA and PIP loading and their preferential orientation upon interaction with the surface of AuNSs. This unique nanomaterial could be used for simultaneous drug loading and SERS-based detection.


Author(s):  
Yizhen Zhu ◽  
Dylan Joralmon ◽  
Weitong Shan ◽  
Yiyu Chen ◽  
Jiahui Rong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document