scholarly journals Design and Characterization of Maltose-Conjugated Polycaprolactone Nanofibrous Scaffolds for Uterine Tissue Engineering

Author(s):  
Srividya Hanuman ◽  
Manasa Nune

Abstract Purpose Uterine anomalies are prevalent in women, and the major treatment assisted to them is hysterectomy as donor availability is extremely low. To overcome this, engineering uterine myometrium smooth muscle tissue has become very important. Several studies have shown that polycaprolactone (PCL) nanofibers are very effective in engineering smooth muscles, as this type of scaffold has structural similarities to the extracellular matrices of the cells. Here, we hypothesize that by electrospinning PCL nanofibers, they form a suitable scaffold for uterine tissue engineering. Methods Polycaprolactone nanofibrous scaffolds were fabricated, and surface modification was performed following two step wet chemistry method. First step is aminolysis which introduces the primary amine groups on the PCL scaffolds following which maltose is conjugated on the scaffolds. This was confirmed by the ninhydrin assay for the presence of amine groups. This was followed by ELLA assay where the presence of maltose on the scaffold was quantified. Modified scaffolds were further characterized by scanning electron microscope (SEM), contact angle analysis and Fourier transform infrared spectroscopy (FTIR). MTT assay, live-dead assay and actin staining were performed on the maltose immobilization to study the improvement of the cell attachment and proliferation rates on the modified scaffolds. Results Human uterine fibroblast (HUF) cells displayed significant proliferation on the maltose-modified PCL scaffolds, and they also exhibited appropriate morphology indicating that these modified fibers are highly suitable for uterine cell growth. Conclusion Our results indicate that the fabricated maltose PCL (MPCL) scaffolds would be a potential biomaterial to treat uterine injuries and promote regeneration. Lay Summary and Future Work Uterine anomalies are prevalent in women, and the major treatment is hysterectomy as donor availability is extremely low. Over the past few years, considerable efforts have been directed towards uterine tissue regeneration. This study is to design a tissue engineered scaffold that could act as a human uterine myometrial patch. We propose to create uterine fibroblast-based synthetic scaffolds that act in a condition similar to the intrauterine microenvironment where the embryos are embedded in the uterine wall. For understanding of the efficiency of the myometrial patch, functional characterization will be performed to study the effects of estrogen and prostaglandins on myometrial activity of the designed patch. Results from these experiments will assist a deeper understanding of how to construct a total bioengineered uterus which can substitute the uterus transplantation procedure, which nonetheless is in its initial stages of development. Graphical Abstract

Author(s):  
Truong Le Bich Tram Truong

In this article, chitosan/biphasic calcium phosphate (CS/BCP)nanofibers were prepared by electrospinning. From the culture of osteogenic cells, the biocompatibility of CS/BCP nanofibrous substrates was identified and increased by the photocrosslinking. The enhancement in cell attachment and proliferation was caused by the improvement in nanofibers’ mechanical properties. The biocompatibility to osteoblasts was also promoted with the content of BCP. The osteogenic differentiation in early, middle and late stage was encouraged by the addition of BCP on nanofibrous substrates. The CS/BCP nanofibers were highly specific to osteogenic cells, revealed by difficulties in the growth of non-osteogenic cells on this composite nanofibrous scaffold. The novel nanofibrous scaffolds showed great potential in the tissue engineering of bones.


2020 ◽  
Vol 20 (7) ◽  
pp. 4336-4339
Author(s):  
Se Rim Jang ◽  
Chan Hee Park ◽  
Cheol Sang Kim

The fabrication of various types of scaffolds using electrospinning has been greatly researched for tissue engineering applications in recent times. The rapid initial cell adhesion in electrospun scaffolds helps in the rapid recovery of graft sites. The characteristics of nanofibrous scaffolds can be improved by modifying the topological features and surface of the nanofibers. Previous studies have shown that the scaffold structure is related to a cell attachment ability. In this study, we modified the surface of the fibers to mimic celery structure. It was confirmed that solvent evaporation and polymer concentration influenced the formation of the surface. This structural property can improve the initial adhesion ability of cells. Cellulose acetate solutions were prepared and tested in various concentrations (15 wt%, 20 wt%, and 30 wt%). Scanning electron microscopy (SEM), tensile test and cell experiments were performed to evaluate the physical properties and biocompatibility. The structure of the present nanofiber can be applied as a very effective scaffold and it is expected to have a positive effect in the tissue engineering field.


2015 ◽  
Vol 6 ◽  
pp. 254-262 ◽  
Author(s):  
Anna Maria Pappa ◽  
Varvara Karagkiozaki ◽  
Silke Krol ◽  
Spyros Kassavetis ◽  
Dimitris Konstantinou ◽  
...  

Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM). Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL) electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold and its effect on cell attachment and growth was evaluated. The conditions of the surface modification were properly adjusted in order to define those conditions of the treatment that result in surfaces favorable for cell growth, while maintaining morphological integrity and mechanical behavior. Goniometry (contact angle measurements), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) measurements were used to evaluate the morphological and chemical changes induced by the plasma treatment. Moreover, depth-sensing nanoindentation was performed to study the resistance of the plasma-treated scaffolds to plastic deformation. Lastly, the cell studies indicated that all scaffolds were cytocompatible, with the plasma-treated ones expressing a more pronounced cell viability and adhesion. All the above findings demonstrate the great potential of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants.


2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.


2015 ◽  
Vol 3 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Linhao Li ◽  
Yuna Qian ◽  
Chongwen Lin ◽  
Haibin Li ◽  
Chao Jiang ◽  
...  

Silk middle gland extracted sericin protein based electrospun nanofibrous scaffolds with excellent biocompatibility have been developed for tissue engineering applications.


1981 ◽  
Vol 49 (1) ◽  
pp. 283-297
Author(s):  
J.D. Aplin ◽  
R.C. Hughes

Fluorescein isothiocyanate (FITC) and other anionic reagents specific for amine groups have previously been shown to inhibit the adhesion and spreading of cultured fibroblasts to fibronectin-coated surfaces (Butters, Devalia, Aplin & Hughes, 1980). Here it is demonstrated that a population of FITC-labelled cells can be separated using flow cytometry into fractions displaying greater and lesser adhesivity at lower and higher fluorescence, respectively, demonstrating that the inhibition is dose-dependent. Glass coverslips covalently derivatized with the lectins ricin and concanavalin A are used to show that the inhibition also occurs in lectinmediated cell adhesion as well as in adhesion to collagen coated with fibronectin and plastic coated with serum or antibody, suggesting that all of these responses share a common, FITC-sensitive component. Simple primary amine compounds inhibit adhesion to fibronectin, but specific inhibitors of transglutaminases do not affect the process. Transglutaminase activity of cell surfaces has been implicated in protein endocytosis and receptor recycling (Davies et al. 1980). FITC modification of cells appears to affect specifically adhesive interaction, since ricin cytotoxicity and infection of cells with influenza and Sendai viruses (phenomena thought to proceed by means of receptor-mediated endocytosis) are unaffected. Evidently, receptor-mediated cell attachment, spreading on protein-coated surfaces and protein endocytosis are functionally separate events requiring different cell-surface membrane components, even when the same protein (ricin) is used to trigger these 2 processes.


Sign in / Sign up

Export Citation Format

Share Document