scholarly journals Smart Bionic Surfaces with Switchable Wettability and Applications

2021 ◽  
Vol 18 (3) ◽  
pp. 473-500
Author(s):  
Shuyi Li ◽  
Yuyan Fan ◽  
Yan Liu ◽  
Shichao Niu ◽  
Zhiwu Han ◽  
...  

AbstractIn order to satisfy the needs of different applications and more complex intelligent devices, smart control of surface wettability will be necessary and desirable, which gradually become a hot spot and focus in the field of interface wetting. Herein, we review interfacial wetting states related to switchable wettability on superwettable materials, including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability. This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli, which is mainly governed by the transformation of surface chemical composition and geometrical structures. Among that, various external stimuli such as physical stimulation (temperature, light, electric, magnetic, mechanical stress), chemical stimulation (pH, ion, solvent) and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability. Moreover, we also summarize the applications of smart surfaces in different fields, such as oil/water separation, programmable transportation, anti-biofouling, detection and delivery, smart soft robotic etc. Furthermore, current limitations and future perspective in the development of smart wetting surfaces are also given. This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli, so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications.

Author(s):  
Meenaxi Sharma ◽  
Krishnacharya Khare

Modification of surface wettability (ranging from complete wetting to complete non-wetting) of various surfaces is often required in many applications. Conventionally, it is done using a coating of suitable materials as per the requirement. In this approach, the old coating needs to be replaced every time by a new appropriate one. Alternatively, smart responsive surfaces can show tunable wettability with external stimulus. Electric field, temperature, light, pH, mechanical strain, etc. can be effectively used as external stimuli, and a suitable coating can be incorporated, which responses to the respective stimulus. These surfaces can be used to tune the surface wettability to any extent based on the magnitude of the stimulus. The primary role of the external stimulus is to vary the liquid-solid interfacial energy, which subsequently changes the surface wettability. The biggest advantage of this approach is that the surface wettability can be reversibly tuned. Each of the techniques mentioned above has many advantages along with certain limitations, and the combination of advantages and limitations helps users to choose the right technique for their work. Many recent studies have used this approach to quantify the tuning of the surface wettability and have also demonstrated its potential in various applications.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 425
Author(s):  
Xianfeng Luo ◽  
Zhongpeng Zhu ◽  
Ye Tian ◽  
Jun You ◽  
Lei Jiang

Titanium dioxide (TiO2) is widely used in various fields both in daily life and industry owing to its excellent photoelectric properties and its induced superwettability. Over the past several decades, various methods have been reported to improve the wettability of TiO2 and plenty of practical applications have been developed. The TiO2-derived materials with different morphologies display a variety of functions including photocatalysis, self-cleaning, oil-water separation, etc. Herein, various functions and applications of TiO2 with superwettability are summarized and described in different sections. First, a brief introduction about the discovery of photoelectrodes made of TiO2 is revealed. The ultra-fast spreading behaviors on TiO2 are shown in the part of ultra-fast spreading with superwettability. The part of controllable wettability introduces the controllable wettability of TiO2-derived materials and their related applications. Recent developments of interfacial photocatalysis and photoelectrochemical reactions with TiO2 are presented in the part of interfacial photocatalysis and photoelectrochemical reactions. The part of nanochannels for ion rectification describes ion transportation in nanochannels based on TiO2-derived materials. In the final section, a brief conclusion and a future outlook based on the superwettability of TiO2 are shown.


2020 ◽  
Vol 1 (1) ◽  
pp. 36-41
Author(s):  
Gaurav Ranabhat ◽  
Ashmita Dhakal ◽  
Saurav Ranabhat ◽  
Ananta Dhakal ◽  
Rakshya Aryal

Modern biotechnology enables an organism to produce a totally new product which the organism does not or cannot produce normally through the incorporation of the technology of ‘Genetic engineering’. Biotechnology shows its technical merits and new development prospects in breeding of new plants varieties with high and stable yield, good quality, as well as stress tolerance and resistance. Some of the most prevailing problems faced in agricultural ecosystems could be solved with the introduction of transgenic crops incorporated with traits for insect pest resistance, herbicide tolerance and resistance to viral diseases. Plant biotechnology has gained importance in the recent past for increasing the quality and quantity of agricultural, horticultural, ornamental plants, and in manipulating the plants for improved agronomic performance. Recent developments in the genome sequencing will have far reaching implications for future agriculture. From this study, we can know that the developing world adopts these fast-changing technologies soon and harness their unprecedented potential for the future benefit of human being.


Author(s):  
Daniel Johnson

This chapter on assessing student learning and Orff Schulwerk examines the foundations of this approach, its focus on creativity, and practical applications of this pedagogy. By reviewing current research literature and international adoptions of the Schulwerk, the chapter focuses on three assessment-related challenges: a lack of clearly defined teaching practices, a de-emphasis of evaluation in the Orff process, and inherent challenges related to assessing creativity. An examination of professional resource documents and recent developments in national standards provides ways to address each of these assessment challenges in Orff-based instruction. A discussion of curricular levels offers more possibilities for enhancing authentic assessment strategies. Practical recommendations for Orff Schulwerk teachers to improve their assessment protocols and implications for teacher-educators conclude this chapter.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 484
Author(s):  
Syed Arif Hussain Rizvi ◽  
Justin George ◽  
Gadi V. P. Reddy ◽  
Xinnian Zeng ◽  
Angel Guerrero

Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.


Author(s):  
Tianjiao Wang ◽  
Jun Zhao ◽  
Chuanxin Weng ◽  
Tong Wang ◽  
Yayun Liu ◽  
...  

Shape memory polymers (SMPs) that change shapes as designed by external stimuli have become one of the most promising materials as actuators, sensors, and deployable devices. However, their practical applications...


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1145
Author(s):  
Yuan Zhao ◽  
Xuecheng Zhu ◽  
Wei Jiang ◽  
Huilin Liu ◽  
Baoguo Sun

With the rapid development of global industry and increasingly frequent product circulation, the separation and detection of chiral drugs/pesticides are becoming increasingly important. The chiral nature of substances can result in harm to the human body, and the selective endocrine-disrupting effect of drug enantiomers is caused by differential enantiospecific binding to receptors. This review is devoted to the specific recognition and resolution of chiral molecules by chromatography and membrane-based enantioseparation techniques. Chromatographic enantiomer separations with chiral stationary phase (CSP)-based columns and membrane-based enantiomer filtration are detailed. In addition, the unique properties of these chiral resolution methods have been summarized for practical applications in the chemistry, environment, biology, medicine, and food industries. We further discussed the recognition mechanism in analytical enantioseparations and analyzed recent developments and future prospects of chromatographic and membrane-based enantioseparations.


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2125-2145 ◽  
Author(s):  
Lu Ming Dong ◽  
Cui Ye ◽  
Lin Lin Zheng ◽  
Zhong Feng Gao ◽  
Fan Xia

AbstractTransition metal carbides and nitrides (MXenes), which comprise a rapidly growing family of two-dimensional materials, have attracted extensive attention of the scientific community, owing to its unique characteristics of high specific surface area, remarkable biocompatibility, and versatile applications. Exploring different methods to tune the size and morphology of MXenes plays a critical role in their practical applications. In recent years, MXenes have been demonstrated as promising nanomaterials for cancer therapy with substantial performances, which not only are helpful to clarify the mechanism between properties and morphologies but also bridge the gap between MXene nanotechnology and forward-looking applications. In this review, recent progress on the preparation and properties of MXenes are summarized. Further applications in cancer therapy are also discussed. Finally, the current opportunities and future perspective of MXenes are described.


Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 53 ◽  
Author(s):  
Hironori Sugiyama ◽  
Taro Toyota

Experimental evolution in chemical models of cells could reveal the fundamental mechanisms of cells today. Various chemical cell models, water-in-oil emulsions, oil-on-water droplets, and vesicles have been constructed in order to conduct research on experimental evolution. In this review, firstly, recent studies with these candidate models are introduced and discussed with regards to the two hierarchical directions of experimental evolution (chemical evolution and evolution of a molecular self-assembly). Secondly, we suggest giant vesicles (GVs), which have diameters larger than 1 µm, as promising chemical cell models for studying experimental evolution. Thirdly, since technical difficulties still exist in conventional GV experiments, recent developments of microfluidic devices to deal with GVs are reviewed with regards to the realization of open-ended evolution in GVs. Finally, as a future perspective, we link the concept of messy chemistry to the promising, unexplored direction of experimental evolution in GVs.


Sign in / Sign up

Export Citation Format

Share Document