scholarly journals Gold hard anodized (GHA) materials with antimicrobial surface properties: mechanical, tribological, and microbiological characterization

Author(s):  
Anna Nastruzzi ◽  
Franco Cicerchia ◽  
Annalisa Fortini ◽  
Claudio Nastruzzi

AbstractInfections acquired in public spaces (i.e., transports, restaurants, and bars, hospitals) present a serious burden for the entire health systems. In this respect, appropriate preventative and control measures in order to eliminate or reduce the negative effects of surface-transmitted infections appear highly desirable. Alongside recommendations for treatment and hygiene, antimicrobial material surfaces can offer indeed an important contribution to the prevention of infections. The aim of the current paper is therefore to describe the preparation and characterization of a new material obtained by an innovative anodic oxidation, defined as golden hard anodizing GHA. The anodic oxide surface thanks to the nanoporous structure acts as reservoir of silver ions (Ag+) which in turn confer antimicrobial properties to the material surface. Specifically, the manuscript presents a thorough preparation and characterization of a new material obtained by an innovative anodic oxidation treatment applied on commercially available aluminum alloys including the microscopic analysis and the description of the antimicrobial performances against a number of microorganisms, including among the others, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. More specifically, the current article describes some of the properties of GHA materials. The tribological properties of GHA were evaluated through experimental tests performed with a pin-on-disk tribometer. The morphology of the wear surfaces was studied by means of a scanning electron microscope (SEM) analysis and profilometry investigations. Furthermore, in order to evaluate the possible anticorrosive properties of GHA, tests in neutral salt spray are in addition described.

Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 544 ◽  
Author(s):  
Yakup Kaya

In this study, explosive welding was used in the cladding of aluminum plates to ship steel plates at different explosive ratios. Ship steel-aluminum bimetal composite plates were manufactured and the influence of the explosive ratio on the cladded bonding interface was examined. Optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) studies were employed for the characterization of the bonding interface of the manufactured ship steel-aluminum bimetal composites. Tensile-shear, notch impact toughness, bending and twisting tests, and microhardness studies were implemented to determine the mechanical features of the bimetal composite materials. In addition, neutral salt spray (NSS) tests were performed in order to examine the corrosion behavior of the bimetal composites.


Author(s):  
X. Lin ◽  
X. K. Wang ◽  
V. P. Dravid ◽  
J. B. Ketterson ◽  
R. P. H. Chang

For small curvatures of a graphitic sheet, carbon atoms can maintain their preferred sp2 bonding while allowing the sheet to have various three-dimensional geometries, which may have exotic structural and electronic properties. In addition the fivefold rings will lead to a positive Gaussian curvature in the hexagonal network, and the sevenfold rings cause a negative one. By combining these sevenfold and fivefold rings with sixfold rings, it is possible to construct complicated carbon sp2 networks. Because it is much easier to introduce pentagons and heptagons into the single-layer hexagonal network than into the multilayer network, the complicated morphologies would be more common in the single-layer graphite structures. In this contribution, we report the observation and characterization of a new material of monolayer graphitic structure by electron diffraction, HREM, EELS.The synthesis process used in this study is reported early. We utilized a composite anode of graphite and copper for arc evaporation in helium.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1497 ◽  
Author(s):  
Isabel Santamaría Vicario ◽  
Lourdes Alameda Cuenca-Romero ◽  
Sara Gutiérrez González ◽  
Verónica Calderón Carpintero ◽  
Ángel Rodríguez Saiz

The properties and the behaviour of plaster mortars designed with Polyurethane Foam Waste (PFW) are studied in this investigation. A characterization of the mixtures is completed, in accordance with the technical specifications of European Norms. The incorporation of polyurethane waste foam can yield porous and lighter mortars, with better resistance to water-vapour permeability, although with weaker mechanical strength and higher levels of absorbency. Nevertheless, suitable mechanical strengths were achieved, resulting in a new material that is compliant with the requirements of the construction industry. The use of PFW in the the manufacture of gypsum mortars for construction reduces the consumption of natural resources and, at the same time, recovers an industrial waste that is otherwise difficult to recycle.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 337
Author(s):  
Ewa Wierzbicka ◽  
Marta Mohedano ◽  
Endzhe Matykina ◽  
Raul Arrabal

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulations demand for an expedient discovery of a Cr(VI)-free alternative corrosion protection for light alloys even though the green alternatives might never be as cheap as current harmful technologies. In the present work, flash- plasma electrolytic oxidation coatings (FPEO) with the process duration < 90 s are developed on AZ31B alloy in varied mixtures of silicate-, phosphate-, aluminate-, and fluoride-based alkaline electrolytes implementing current density and voltage limits. The overall evaluation of the coatings’ anticorrosion performance (electrochemical impedance spectroscopy (EIS), neutral salt spray test (NSST), paintability) shows that from nine optimized FPEO recipes, two (based on phosphate, fluoride, and aluminate or silicate mixtures) are found to be an adequate substitute for commercially used Cr(VI)-based conversion coating (CCC). The FPEO coatings with the best corrosion resistance consume a very low amount of energy (~1 kW h m−2 µm−1). It is also found that the lower the energy consumption of the FPEO process, the better the corrosion resistance of the resultant coating. The superb corrosion protection and a solid environmentally friendly outlook of PEO-based corrosion protection technology may facilitate the economic justification for industrial end-users of the current-consuming process as a replacement of the electroless CCC process.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 930
Author(s):  
Juan Jesús Alba-Galvín ◽  
Leandro González-Rovira ◽  
Francisco Javier Botana ◽  
Maria Lekka ◽  
Francesco Andreatta ◽  
...  

The selection of appropriate surface pretreatments is one of the pending issues for the industrial application of cerium-based chemical conversion coatings (CeCC) as an alternative for toxic chromate conversion coating (CrCC). A two-step surface pretreatment based on commercial products has been successfully used here to obtain CeCC on AA2024-T3 and AA7075-T6. Specimens processed for 1 to 15 min in solutions containing CeCl3 and H2O2 have been studied by scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), glow discharge optical emission spectroscopy (GDOES), potentiodynamic linear polarization (LP), electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. SEM-EDX showed that CeCC was firstly observed as deposits, followed by a general coverage of the surface with the formation of cracks where the coating was getting thicker. GDOES confirmed an increase of the CeCC thickness as the deposition proceed, the formation of CeCC over 7075 being faster than over 2024. There was a Ce-rich layer in both alloys and an aluminum oxide/hydroxide layer on 7075 between the upper Ce-rich layer and the aluminum matrix. According to LP and EIS, CeCC in all samples offered cathodic protection and comparable degradation in chloride-containing media. Finally, the NSS test corroborated the anti-corrosion properties of the CeCC obtained after the commercial pretreatments employed.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Silvia Matiacevich ◽  
Natalia Riquelme ◽  
María Lidia Herrera

Alginate from algal biomass is used as edible film and the incorporation of antimicrobial agents improves its performance to increase the shelf-life of fresh foods. However, environmental conditions and intrinsic properties of films influence their release. The aim of this study was to investigate the effect of the concentration and type of encapsulating agent and pH of emulsions on the physical and antimicrobial properties of alginate-carvacrol films. Films containing alginate, carvacrol as antimicrobial agent, and Tween 20 or trehalose (0.25 and 0.75% w/w) as encapsulating agents were obtained from suspensions at pH 4 and pH 8. Physical characterization of emulsions and films and antimicrobial properties (E. coliandB. cinerea) was evaluated. Results showed that droplets size depended on trehalose concentration, but emulsion stability depended on pH and type of encapsulating agent, being more stable samples with trehalose at pH 4. Although films with Tween 20 presented the highest opacity, they showed the best antimicrobial properties at initial time; however, during storage time, they lost their activity before samples with trehalose and relative humidity (RH) was the principal factor to influence their release. Therefore, sample formulated with 0.25% trehalose at pH 4 and stored at 75% RH had the best potential as edible film for fresh fruits.


2015 ◽  
Vol 1095 ◽  
pp. 341-344 ◽  
Author(s):  
Can Hui Xu ◽  
Guang Liang Zhang ◽  
Xin Zhou ◽  
Xi Lin Xiao ◽  
Chang Ming Nie ◽  
...  

The characterization of phosphoproteins requires highly specific methods for the separation and enrichment of phosphopeptides. Here we report a novel metal ion-immobilized solid phase material for the separation and enrichment of phosphopeptides. The material is uranyl-salophen-silica gel (USSG) particles in which salophen is a tetradentate ligand of uranyl ion. In USSG salophen is connected on the surface of silica gel and uranyl is bound on the surface through its coordination with salophen. Phosphopeptides can be selectively retained by USSG because uranyl-salophen can bind phosphate moiety with strong affinity and high selectivity. The new material USSG has been successfully used for the separation of phosphopeptides from peptide mixtures with the separation efficiency of 97.0% to 97.4%.


Sign in / Sign up

Export Citation Format

Share Document