scholarly journals Synthesis and characterizations of (Mg, Co, Ni, Cu, Zn)O high-entropy oxides

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Temesgen Debelo Desissa ◽  
Matusal Meja ◽  
Dinsefa Andoshe ◽  
Femi Olu ◽  
Fekadu Gochole ◽  
...  

AbstractHigh-temperature structural ceramic materials require stability in terms of thermal and mechanical properties. High entropy oxides (HEOs) are among the emerging novel family of advanced ceramic materials with peculiar functional properties. However, their thermal stabilities and mechanical properties are not well investigated. In this work, HEO systems were synthesized from binary oxides of MgO, CoO, NiO, CuO, and ZnO using solid-state reaction method at high temperature, after obtaining the individual oxides through co-precipitation methods. The phase purity of as-synthesized and sintered samples was characterized using X-ray powder diffraction, while the microstructural investigation was performed using Scanning electron microscopy. Mechanical property of the sintered samples at different sintering times and temperatures was investigated and the sample sintered at a sintering temperature of 1200 °C for 15 h sintering time showed a maximum Vickers hardness of about 16 GPa. This result is comparable with some of the hard ceramic materials, and therefore the materials could be a potential candidate for structural applications.

Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Alloy Digest ◽  
1974 ◽  
Vol 23 (5) ◽  

Abstract WC-3015 is a columbium-base alloy developed for structural applications in high-temperature oxidizing environments. It is characterized by good oxidation resistance, good mechanical properties and compatibility with silicide coatings. Cold-rolled sheet can be joined and welded without cracking. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-21. Producer or source: Wah Chang, a Teledyne Corporation.


2021 ◽  
Vol 87 (8) ◽  
pp. 51-63
Author(s):  
A. M. Shestakov

An increase the operating temperature range of structural elements and aircraft assemblies is one of the main goals in developing advanced and new models of aerospace equipment to improve their technical characteristics. The most heat-loaded aircraft structures, such as a combustion chamber, high-pressure turbine segments, nozzle flaps with a controlled thrust vector, must have a long service life under conditions of high temperatures, an oxidizing environment, fuel combustion products, and variable mechanical and thermal loads. At the same time, modern Ti and Ni-based superalloys have reached the limits of their operating temperatures. The leading world aircraft manufacturers — General Electric (USA), Rolls-Royce High Temperature Composite Inc. (USA), Snecma Propulsion Solide (France) — actively conduct fundamental research in developing ceramic materials with high (1300 – 1600°C) and ultrahigh (2000 – 2500°C) operating temperatures. However, ceramic materials have a number of shortcomings attributed to the high brittleness and low crack resistance of monolithic ceramics. Moreover, manufacturing of complex configuration and large-sized ceramic parts faces serious difficulties. Nowadays, ceramic composite materials with a high-temperature matrix (e.g., based on ZrC-SiC) and reinforcing filler, an inorganic fiber, (e.g., silicon carbide) appeared most promising for operating temperatures above 1200°C and exhibited enhanced energy efficiency. Ceramic fibers based on silicon compounds possess excellent mechanical properties: the tensile strength more than 2 GPa, modulus of elasticity more than 200 GPa, and thermal resistance at a temperature above 800°C, thus making them an essential reinforcing component in metal and ceramic composites. This review is devoted to silicon carbide core fibers obtained by chemical vapor deposition of silicon carbide onto a tungsten or carbon core, which makes it possible to obtain fibers a 100 – 150 μm in diameter to be used in composites with a metal matrix. The coreless SiC-fibers with a diameter of 10 – 20 μm obtained by molding a polymer precursor from a melt and used mainly in ceramic composites are also considered. A comparative analysis of the phase composition, physical and mechanical properties and thermal-oxidative resistance of fibers obtained by different methods is presented. Whiskers (filamentary crystals) are also considered as reinforcing fillers for composite materials along with their properties and methods of production. The prospects of using different fibers and whiskers as reinforcing fillers for composites are discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Olivia F. Dippo ◽  
Neda Mesgarzadeh ◽  
Tyler J. Harrington ◽  
Grant D. Schrader ◽  
Kenneth S. Vecchio

AbstractHigh-entropy ceramics have potential to improve the mechanical properties and high-temperature stability over traditional ceramics, and high entropy nitrides and carbonitrides (HENs and HECNs) are particularly attractive for high temperature and high hardness applications. The synthesis of 5 bulk HENs and 4 bulk HECNs forming single-phase materials is reported herein among 11 samples prepared. The hardness of HENs and HECNs increased by an average of 22% and 39%, respectively, over the rule-of-mixtures average of their monocarbide and mononitride precursors. Similarly, elastic modulus values increased by an average of 17% in nitrides and 31% in carbonitrides over their rule-of-mixtures values. The enhancement in mechanical properties is tied to an increase in the configurational entropy and a decrease in the valence electron concentration, providing parameters for tuning mechanical properties of high-entropy ceramics.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Michael G. Fahrmann ◽  
Vinay P. Deodeshmukh ◽  
S. Krishna Srivastava

HAYNES® NS-163® alloy was developed by Haynes International Inc., Kokomo, IN, for high-temperature structural applications by pursuing a dual manufacturing approach: the fabrication of components in the readily weldable and formable mill-annealed condition, and their subsequent strengthening by means of a gas nitriding process. The latter process results in dispersion-strengthening by virtue of formation of internal nitrides. Since this process is diffusion-controlled, component section thicknesses are limited to approximately 2.0 mm (0.080 in.). Microstructures and mechanical properties of nitrided sheet samples are presented. Oxidation resistance and the need for coatings at temperatures exceeding 980 °C (1800 °F) are addressed as well.


2002 ◽  
Vol 756 ◽  
Author(s):  
H. Fritze ◽  
H. Seh ◽  
O. Schneider ◽  
H. L. Tuller ◽  
G. Borchardt

ABSTRACTThe in-situ determination of small mass changes of thin films became feasible with the availability of high temperature stable microbalances. With this technique, changes of the mechanical properties of thin films deposited on piezoelectric resonators are investigated at temperatures above 500 °C by monitoring the resonance behavior of the resonators. The results are valuable for fundamental understanding of the ionic and electronic transport processes in ceramic materials and for applications such as high temperature gas sensors.This work correlates the electrical and the mechanical properties of TiO2-x at different oxygen partial pressures. TiO2-x films are deposited onto high temperature resonators by laser ablation and characterized by the high temperature microbalance technique as well as electrical impedance spectroscopy at 600 °C.The oxygen partial pressure dependent resonance behavior cannot be attributed solely to mass changes of the TiO2-x film. Changes of the film's mechanical stiffness have to be taken into consideration to explain the resonance behavior. The simultaneous electrical impedance measurements indicate a n-type conduction behavior of the TiO2-x films.


2007 ◽  
Vol 14 (01) ◽  
pp. 117-122 ◽  
Author(s):  
JIEGUANG SONG ◽  
LIANMENG ZHANG ◽  
JUNGUO LI ◽  
JIANRONG SONG

ZrB 2 has some excellent performances, but it is easily oxidized at high temperatures to impact the high-temperature strength, which restricts its applied range. To protect from the oxidization and improve the strength of ZrB 2 at high temperature, the surface of ZrB 2 particles is coated with the Al ( OH )3– Y ( OH )3 shell to synthesize ZrB 2@ Al ( OH )3– Y ( OH )3 core–shell composite particles. Through the thermodynamic and kinetic analyses of the heterogeneous nucleation and homogeneous nucleation, the concentration product of precursor ion ( Y 3+ or Al 3+) and OH - (Qi) must be greater than the solubility product (K sp ), respectively; the conditions of Y 3+ and Al 3+ are reached to produce Al ( OH )3– Y ( OH )3 shell on the ZrB 2 surface between the Y 3+ line and the AlO 2- line. Through TEM and XRD analyses, ZrB 2@ Al ( OH )3– Y ( OH )3 core–shell composite particles are successfully synthesized by the co-precipitation method, the shell layer quality is better at pH = 9, which established the foundation for preparing high-performance YAG / ZrB 2 and Al 2 O 3– YAG / ZrB 2 multiphase ceramic materials.


Sign in / Sign up

Export Citation Format

Share Document