scholarly journals Correction to: Effects of luffa and glass fibers in polyurethane-based ternary sandwich composites for building materials

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
J. F. Jamaluddin ◽  
A. Firouzi ◽  
M. R. Islam ◽  
A. N. A. Yahaya
2020 ◽  
Vol 2 (7) ◽  
Author(s):  
J. F. Jamaluddin ◽  
A. Firouzi ◽  
M. R. Islam ◽  
A. N. A. Yahaya

2020 ◽  
pp. 002199832096484
Author(s):  
Tohid Dastan ◽  
Aida Safian ◽  
Mohammad Sheikhzadeh

As a way to save petroleum resources, considerable efforts were made in the last three decades to develop green composites. Green composites are a category of composite materials in which at least one phase (reinforcement or matrix) is made from renewable resources. An attempt was made to present a simple fabrication process to produce hollow integrally woven sandwich composites. In addition, the potential of jute fibers to be utilized as piles in the core of an integrally woven sandwich composite was assessed and compared to the counterparts made using glass fibers. The crashworthiness performances of integrally woven sandwich composite samples considering the effect of relative density, pile material and the presence of polyurethane foam were investigated through performing quasi-static flat-wise compression tests. Based on the findings, the foam-filled integrally woven sandwich composites exhibited stable compression load-displacement response and better energy absorption properties over pure foam, which make them appropriate for automobile interior components. Moreover, a computational cost-efficient finite element modeling was presented and subsequently validated with experimental results.


2002 ◽  
Vol 31 (3) ◽  
pp. 205-217 ◽  
Author(s):  
Fred Isley

A niche in the textile industry provides high strength, high modulus textile fabrics to the construction industry as a potential replacement for more traditional building materials such as wood, concrete, masonry, and steel. The mechanical properties of fabrics made of aramid, carbon and glass fibers lend themselves to the needs of the design engineer by providing high strength to weight, high stiffness to weight and extreme flexibility in use and design. Combined with cross-linking resins systems to form a composite, the fabrics are being widely accepted by the civil engineers serving the construction trades Thousands of structures around the world have been repaired, retrofitted or built of such fabrics in the past 10 years.


2012 ◽  
Vol 450-451 ◽  
pp. 499-502 ◽  
Author(s):  
Rui Hong Wu

As a new building materials, mechanical properties﹑physical properties and chemical properties of basalt fibers are studied in the paper. Compared with other building materials, the basalt fibers have better tensile strength than the E-glass fibers, greater failure strain than the carbon fibers as well as good resistance to chemical environment, impact load and fire with less poisonous fumes. In addition, the basalt fibers do not contain any other additives in a single producing process, which makes additional advantage in cost. In addition, the applications of basalt fibers in building materials are emphatically elaborated.


2014 ◽  
Vol 606 ◽  
pp. 153-157
Author(s):  
P. Nagasankar ◽  
S. Balasivanandha Prabu ◽  
Velmurugan Ramachandran ◽  
R. Paskaramoorthy

The dynamic characteristics of the Polypropylene honeycomb (PPHC) sandwich composites have been investigated under various temperatures (30°,35°,40°,45°,50°,55°,60°, 65°,70°,75° and 80°C) and different orientations (0° and 90°) of the glass fibers in the composites. Since the thermal properties of the constituent materials (glass fiber, epoxy resin and PPHC core) of the PPHC sandwich composites are different and the in-plane effect of the composites varies with the two different orientations (0° and 90°) of the fibers, the variation of the loss factor under the various temperatures are also different for these orientations. A two stage layup technique has been used to fabricate the sandwich composite specimens. Impulse technique associated with the half power bandwidth method, has been used to evaluate the natural frequency and damping values of the sandwich composite under different temperatures.


2021 ◽  
Vol 7 (10) ◽  
pp. 1774-1786
Author(s):  
Benaicha Amar Cherif ◽  
Fourar Ali ◽  
Mansouri Tarek ◽  
Fawaz Massouh

The aim of this work is to study the mechanical behavior of the sediments extracted from the Koudiet Meddaouar, Timgad dam (Algeria), for a possible valorization in the field for building works in order to minimize this phenomenon which is currently a concern for the operators and the persons in charge of the mobilization of the water resources. This siltation therefore severely limits its storage capacity and consequently it’s operating life. The extraction of the sediments accumulated in the dam's reservoir is therefore imperative, on the pain of seeing it perish in the medium term. These sediments are, however, of great geotechnical and mechanical value. The results of the tests conducted in the laboratory have enabled us to identify the different sediments from a physical and geotechnical point of view In front of the difficulties noted in the control of the silting up of the dams in Algeria, a very important quantity of silt being deposited annually in the dams. In order to achieve our objective, different mixtures of silt with or without lime treatment, cement glass fibers and powdered fibers were studied for the possible manufacture of Compressed Earth Bricks (CEB). The results obtained show that some of the mixtures present very interesting results in the different tests (compression and bending), verifying the conditions of the standards in force and thus allowing their use in the field of the manufacture of building materials. Doi: 10.28991/cej-2021-03091759 Full Text: PDF


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


Author(s):  
Mykhailo Kosmii ◽  
Vasyl. Kasiianchuk ◽  
Ruslan Zhyrak ◽  
Ivan Krykhovetskyi

The purpose of this paper is to analyze and research the legal mechanisms which make it possible to improve agroecology through the organization of cultivation of Jerusalem artichoke.Methodology. The methodology includes comprehensive analysis and generalization of available scientific, theoretical, practical and applied material and development of relevant conclusions and recommendations. During the research, the following methods of scientific cognition were used: dialectical, terminological, historical and legal, logical and normative, systemic and structural, functional, normative and dogmatic, generalization methods. Results. The process of analysis and research highlighted the possibilities of cultivating Jerusalem artichoke for improving agroecology, namely improving the ecological state of the atmosphere air and soil, preparing them for organic farming. The article contains examples of practical application of tubers of Jerusalem artichoke and herbage for the production of therapeutic and prophylactic products, alternative energy and highly efficient building materials. Scientific novelty. The study found that the authors summarized and systematized the levels of legal regulation in the field of using Jerusalem artichoke for improving agroecology, preparing soil for organic farming, in particular: the inter-sectoral level which covers the interaction of agricultural and environmental law in terms of cultivation and use of Jerusalem artichoke; the level of integrated environmental and legal regulation; level of individual resource (floristic) legal regulation; the level of environmental protection (anthropoprotection) legislation.Practical importance. The results of the study can be used in law-making and environmental protection activities related to issues of cultivating and using the Jerusalem artichoke as a means of improving agroecology.


Sign in / Sign up

Export Citation Format

Share Document