scholarly journals Distribution modelling of the garden dormouse Eliomys quercinus (Linnaeus, 1766) with novel climate change indicators

2021 ◽  
Author(s):  
David Bennett ◽  
Freddie Jeanne Richard

AbstractThe garden dormouse Eliomys quercinus has been declining in both abundance and range since the mid-twentieth century. The eastern edge of its range has contracted from the Ural Mountains to eastern Germany. Habitat loss and fragmentation has been the most supported theory to explain the observed decline. Climate change has been implicated in declines of other terrestrial mammals, but not investigated for E. quercinus. To better understand the factors influencing the distribution of this species and to map habitat suitability for E. quercinus across Europe, we created a Maxent species distribution model. Among the main environmental variables used for the modelling, two novel climate change indicator variables were produced to indicate the degree of climate change between the early twentieth century and the present. Areas of high suitability were mapped, and variable importance estimated using jackknife tests and variable contribution metrics. The climate change indicators outperformed many conventional variables, which could indicate that climate change is a factor behind the current distribution of E. quercinus. We also analysed the land use types where presence points of E. quercinus were located and whether they were in areas of “high nature value farmland”. Over 30% of all spatially filtered presence points corresponded to high nature value farmland areas. Our results could indicate a role for changing climate (particularly in temperature) in the range decline E. quercinus, and for high nature value farmland practices in conserving this species. Field studies and improved monitoring for this species are recommended to confirm both possible findings.

2016 ◽  
Vol 74 (3) ◽  
pp. 698-716 ◽  
Author(s):  
Barbara A. Muhling ◽  
Richard Brill ◽  
John T. Lamkin ◽  
Mitchell A. Roffer ◽  
Sang-Ki Lee ◽  
...  

Climate change is likely to drive complex shifts in the distribution and ecology of marine species. Projections of future changes may vary, however, depending on the biological impact model used. In this study, we compared a correlative species distribution model and a simple mechanistic oxygen balance model for Atlantic bluefin tuna (Thunnus thynnus: ABFT) in the North Atlantic Ocean. Both models gave similar results for the recent historical time period, and suggested that ABFT generally occupy favourable metabolic habitats. Projections from an earth system model showed largely temperature-induced reductions in ABFT habitat in the tropical and sub-tropical Atlantic by 2100. However, the oxygen balance model showed more optimistic results in parts of the subpolar North Atlantic. This was partially due to an inherent ability to extrapolate beyond conditions currently encountered by pelagic longline fishing fleets. Projections included considerable uncertainty due to the simplicity of the biological models, and the coarse spatiotemporal resolution of the analyses. Despite these limitations, our results suggest that climate change is likely to increase metabolic stress on ABFT in sub-tropical habitats, but may improve habitat suitability in subpolar habitats, with implications for spawning and migratory behaviours, and availability to fishing fleets.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Wolfgang Falk ◽  
Nils Hempelmann

Climate is the main environmental driver determining the spatial distribution of most tree species at the continental scale. We investigated the distribution change of European beech and Norway spruce due to climate change. We applied a species distribution model (SDM), driven by an ensemble of 21 regional climate models in order to study the shift of the favourability distribution of these species. SDMs were parameterized for 1971–2000, as well as 2021–2050 and 2071–2100 using the SRES scenario A1B and three physiological meaningful climate variables. Growing degree sum and precipitation sum were calculated for the growing season on a basis of daily data. Results show a general north-eastern and altitudinal shift in climatological favourability for both species, although the shift is more marked for spruce. The gain of new favourable sites in the north or in the Alps is stronger for beech compared to spruce. Uncertainty is expressed as the variance of the averaged maps and with a density function. Uncertainty in species distribution increases over time. This study demonstrates the importance of data ensembles and shows how to deal with different outcomes in order to improve impact studies by showing uncertainty of the resulting maps.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12001
Author(s):  
Jinbo Fu ◽  
Linlin Zhao ◽  
Changdong Liu ◽  
Bin Sun

As IUCN critically vulnerable species,the Indo-Pacific humpback dolphins (Sousa chinensis) have attracted great public attention in recent years. The threats of human disturbance and environmental pollution to this population have been documented extensively. However, research on the sensitivity of this species to climate change is lacking. To understand the effect of climate change on the potential distribution of Sousa chinensis, we developed a weighted ensemble model based on 82 occurrence records and six predictor variables (e.g., ocean depth, distance to shore, mean temperature, salinity, ice thickness, and current velocity). According to the true skill statistic (TSS) and the area under the receiver operating characteristic curve (AUC), our ensemble model presented higher prediction precision than most of the single-algorithm models. It also indicated that ocean depth and distance to shore were the most important predictors in shaping the distribution patterns. The projections for the 2050s and 2100s from our ensemble model indicated a severe adverse impact of climate change on the Sousa chinensis habitat. Over 75% and 80% of the suitable habitat in the present day will be lost in all representative concentration pathway emission scenarios (RCPS) in the 2050s and 2100s, respectively. With the increased numbers of records of stranding and deaths of Sousa chinensis in recent years, strict management regulations and conservation plans are urgent to safeguard the current suitable habitats. Due to habitat contraction and poleward shift in the future, adaptive management strategies, including designing new reserves and adjusting the location and range of reserves according to the geographical distribution of Sousa chinensis, should be formulated to minimize the impacts of climate change on this species.


2017 ◽  
Vol 332 ◽  
pp. 43-55 ◽  
Author(s):  
Alain Jaures Gbètoho ◽  
Augustin K. N. Aoudji ◽  
Lizanne Roxburgh ◽  
Jean C. Ganglo

In this study, species distribution model- ling (SDM) was applied to the manage- ment of secondary forests in Benin. This study aims at identifying suitable areas where the use of candidate pioneer spe- cies, such as Lonchocarpus sericeus and Anogeissus leiocarpa, could be targeted to ensure at low cost, currently and  in  the context of global climate change, fast reconstitution of secondary forests and disturbed ecosystems and the recovery  of their biodiversity. Using occurrence records from the Global Biodiversity Infor- mation Facility (GBIF) website and cur- rent environmental data, the factors that affected the distribution of the species were assessed in West Africa. The models developed in MaxEnt and  R  software  for West Africa only, for both species, showed good predictive power with  AUC > 0.80 and AUC ratios well above 1.5. The results were projected in future climate at the horizon 2055, using AfriClim data under rcp4.5 and rcp8.5 and suggested a little reduction in the range of L. seri- ceus and any variation for A. leiocarpa. The potential distribution of the two spe- cies indicated that they could be used for vegetation restoration activities both now and in the mid-21st century. Improve- ment are needed through the use of com- plementary data, the extension to others species and the assessment of uncertain- ties related to these predictions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shao-Ji Hu ◽  
Dong-Hui Xing ◽  
Zhi-Xian Gong ◽  
Jin-Ming Hu

Abstract Bhutanitis thaidina is an endemic, rare, and protected swallowtail in China. Deforestation, habitat fragmentation, illegal commercialised capture, and exploitation of larval food plants are believed to be the four major causes of population decline of B. thaidina in the recent decade. However, little attention was paid to the impact of climate change. This study used ecological niche factor analysis and species distribution model to analyse the current suitable areas for B. thaidina with BioClim variables as well as its future suitable areas under four future climate scenarios (represented by four Representative Concentration Pathways: RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Statistical analysis was carried out to compare the possible area and altitude changes to the distribution of B. thaidina under changing climate. Our analyses showed that the suitable areas for B. thaidina are fragmented under the current climate, with four suitable centres in northwestern Yunnan, northeastern Yunnan and northwestern Guizhou, the western margin of Sichuan Basin, and Qinling mountains. Apart from further habitat fragmentation under climate change, slight range expansion (average 6.0–8.9%) was detected under the RCP2.6 and RCP4.5 scenarios, while more range contraction (average 1.3–26.9%) was detected under the RCP6.0 and RCP8.5 scenarios, with the two southern suitable centres suffering most. Also, a tendency of contraction (2,500–3,500 m) and upslope shift (~600 m) in suitable altitude range were detected. The findings of this study supported the climate-vulnerable hypothesis of B. thaidina, especially under future climate like the RCP6.0 and RCP8.5 scenarios, in terms of contraction in suitable areas and altitude ranges. Conservation priority should be given to northwestern Yunnan, northeastern Yunnan, and northwestern Guizhou to alleviate the stress of massive habitat loss and extinction. Refugial areas should be established in all four suitable centres to maintain genetic diversity of B. thaidina in China.


Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 68
Author(s):  
Mary Ann Cunningham ◽  
Nicholas S. Wright ◽  
Penelope B. Mort Ranta ◽  
Hannah K. Benton ◽  
Hassan G. Ragy ◽  
...  

Climate models project vulnerability to global warming in low-income regions, with important implications for sustainable development. While food crops are the priority, smallholder cash crops support food security, education, and other priorities. Despite its importance as a populous region subject to substantial climate change, West Africa has received relatively slight attention in spatial assessments of climate impacts. In this region, rainfed cotton (Gossypium hirsutum) provides essential smallholder income. We used a spatially explicit species distribution model to project likely changes in the spatial distribution of suitable climates for rainfed cotton in West Africa. We modeled suitable climate conditions from the recent past (1970–2000) and projected the range of those conditions in 2050 (Representative Concentration Pathways (RCP) 4.5 and 8.5). The suitable area declined by 60 percent under RCP4.5 and by 80 percent under RCP8.5. Of 15 countries in the study area, all but two declined to less than ten percent suitable under RCP8.5. The annual precipitation was the most influential factor in explaining baseline cotton distribution, but 2050 temperatures appear to become the limiting factor, rising beyond the range in which rainfed cotton has historically been grown. Adaptation to these changes and progress on sustainable development goals will depend on responses at multiple scales of governance, including global support and cooperation.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 429
Author(s):  
Yadong Xu ◽  
Yi Huang ◽  
Huiru Zhao ◽  
Meiling Yang ◽  
Yuqi Zhuang ◽  
...  

Cypripedium japonicum is an endangered terrestrial orchid species with high ornamental and medicinal value. As global warming continues to intensify, the survival of C. japonicum will be further challenged. Understanding the impact of climate change on its potential distribution is of great significance to conserve this species. In this study, we established an ensemble species distribution model based on occurrence records of C. japonicum and 13 environmental variables to predict its potential distribution under current and future climatic conditions. The results show that the true skill statistic (TSS), Cohen’s kappa statistic (Kappa), and the area under the receiver operating characteristic curve (AUC) values of the ensemble model were 0.968, 0.906, and 0.995, respectively, providing more robust predictions. The key environmental variables affecting the distribution of C. japonicum were the precipitation in the warmest quarter (Bio18) and the mean temperature in the driest quarter (Bio9). Under future climatic conditions, the total suitable habitat of C. japonicum will increase slightly and tend to migrate northwestward, but the highly suitable areas will be severely lost. By 2070, the loss of its highly suitable habitat area will reach 57.69–72.24% under representative concentration pathway (RCP) 4.5 and 8.5 respectively, and the highly suitable habitats in Zhejiang and Anhui will almost disappear. It is noteworthy that the highly suitable habitat of C. japonicum has never crossed the Qinba mountainous area during the migration process of the suitable habitat to the northwest. Meanwhile, as the best-preserved area of highly suitable habitat for C. japonicum in the future, the Qinba mountainous area is of great significance to protect the wild germplasm resources of C. japonicum. In addition, we found that most of the changes predicted for 2070 will already be seen in 2050; the problem of climate change may be more urgent than it is believed.


Author(s):  
Xinyu Liu ◽  
Xiaolu Han ◽  
Zhiqiang Han

Species have shown their habital variations in responding to climate change, especially during the spring and summer spawning seasons. The species distribution model (SDM) is considered the most favorable tool to study the potential effects of climate change on species distribution. Therefore, we developed the ensemble SDM to predict the changes in species distribution of Portunus trituberculatus among different seasons in 2050 and 2100 under the climate scenarios RCP4.5 and RCP8.5. The results of SDM indicate that the distribution of this species will move northward and have obviouse seasonal variations. Meanwhile, the suitable habitat for the species will be significantly reduced in summer, with loses rates ranging from 45.23% (RCP4.5) to 88.26% (RCP.8.5) by 2100s. Habitat reduction will mainly occur in the East China Sea and southern part of the Yellow Sea, while there will be a small increase in the northern Bohai Sea. These findings will be important to manage the ecosystem and fishery, provide an information forecast of this species in the future, and maintain species diversity if the seawater temperature rises.


Sign in / Sign up

Export Citation Format

Share Document