The effect of short chain fatty acids on transmural electrical potential across rat small intestine in vivo

1976 ◽  
Vol 433 (3) ◽  
pp. 654-661 ◽  
Author(s):  
Malcolm J. Wall ◽  
Richard J. Declusin ◽  
Konrad H. Soergel ◽  
R.David Baker
Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

1997 ◽  
Vol 272 (4) ◽  
pp. G705-G712 ◽  
Author(s):  
J. M. Mariadason ◽  
D. H. Barkla ◽  
P. R. Gibson

Control of paracellular permeability in the colonic epithelium is fundamental to its functional competence. This study examines the relationship between physiologically relevant short-chain fatty acids (SCFAs) and paracellular permeability using the Caco-2 cell line model. Butyrate induced a concentration-dependent, reversible increase in transepithelial resistance (TER) that was maximal after 72 h. Butyrate (2 mM) increased TER by 299 +/- 69% (mean +/- SE; n = 5; P < 0.05; t-test) and reduced mannitol flux to 52 +/- 11% (P < 0.05) of control. The effect of butyrate was dependent on protein synthesis and gene transcription but not dependent on its oxidation or activation of adenosine 3',5'-cyclic monophosphate. The other SCFAs, propionate and acetate, also induced a concentration-dependent increase in TER. The effect of butyrate paralleled changes in cellular differentiation, because alkaline phosphatase activity, carcinoembryonic antigen expression, and dome formation were increased. Furthermore, other differentiating agents (dimethyl sulfoxide and retinoic acid) also increased TER. Thus SCFAs reduce paracellular permeability in the Caco-2 cell line, possibly by promotion of a more differentiated phenotype. If such an effect occurs in vivo, it may have ramifications for the biology and pathobiology of colonic mucosa.


2013 ◽  
Vol 144 (5) ◽  
pp. S-564
Author(s):  
Eef Boets ◽  
Els Houben ◽  
Karen Windey ◽  
Vicky De Preter ◽  
Sara V. Gomand ◽  
...  

Digestion ◽  
1990 ◽  
Vol 45 (2) ◽  
pp. 93-101 ◽  
Author(s):  
B.S. Ramakrishna ◽  
S.H. Nance ◽  
I.C. Roberts-Thomson ◽  
W.E.W. Roediger

Microbiology ◽  
2003 ◽  
Vol 149 (8) ◽  
pp. 2031-2037 ◽  
Author(s):  
Peter Kurdi ◽  
Hiroshi Tanaka ◽  
Hendrik W. van Veen ◽  
Kozo Asano ◽  
Fusao Tomita ◽  
...  

Cholic acid (CA) transport was investigated in nine intestinal Bifidobacterium strains. Upon energization with glucose, all of the bifidobacteria accumulated CA. The driving force behind CA accumulation was found to be the transmembrane proton gradient (ΔpH, alkaline interior). The levels of accumulated CA generally coincided with the theoretical values, which were calculated by the Henderson–Hasselbalch equation using the measured internal pH values of the bifidobacteria, and a pK a value of 6·4 for CA. These results suggest that the mechanism of CA accumulation is based on the diffusion of a hydrophobic weak acid across the bacterial cell membrane, and its dissociation according to the ΔpH value. A mixture of short-chain fatty acids (acetate, propionate and butyrate) at the appropriate colonic concentration (117 mM in total) reduced CA accumulation in Bifidobacterium breve JCM 1192T. These short-chain fatty acids, which are weak acids, reduced the ΔpH, thereby decreasing CA accumulation in a dose-dependent manner. The bifidobacteria did not alter or modify the CA molecule. The probiotic potential of CA accumulation in vivo is discussed in relation to human bile acid metabolism.


2020 ◽  
Vol 134 (2) ◽  
pp. 289-302 ◽  
Author(s):  
Yanling Chang ◽  
Yunyan Chen ◽  
Qiong Zhou ◽  
Chuan Wang ◽  
Lei Chen ◽  
...  

Abstract Preeclampsia (PE) is regarded as a pregnancy-associated hypertension disorder that is related to excessive inflammatory responses. Although the gut microbiota (GM) and short-chain fatty acids (SCFAs) have been related to hypertension, their effects on PE remain unknown. We determined the GM abundance and faecal SCFA levels by 16S ribosomal RNA (rRNA) sequencing and gas chromatography, respectively, using faecal samples from 27 patients with severe PE and 36 healthy, pregnant control subjects. We found that patients with PE had significantly decreased GM diversity and altered GM abundance. At the phylum level, patients with PE exhibited decreased abundance of Firmicutes albeit increased abundance of Proteobacteria; at the genus level, patients with PE had lower abundance of Blautia, Eubacterium_rectale, Eubacterium_hallii, Streptococcus, Bifidobacterium, Collinsella, Alistipes, and Subdoligranulum, albeit higher abundance of Enterobacter and Escherichia_Shigella. The faecal levels of butyric and valeric acids were significantly decreased in patients with PE and significantly correlated with the above-mentioned differential GM abundance. We predicted significantly increased abundance of the lipopolysaccharide (LPS)-synthesis pathway and significantly decreased abundance of the G protein-coupled receptor (GPCR) pathway in patients with PE, based on phylogenetic reconstruction of unobserved states (PICRUSt). Finally, we evaluated the effects of oral butyrate on LPS-induced hypertension in pregnant rats. We found that butyrate significantly reduced the blood pressure (BP) in these rats. In summary, we provide the first evidence linking GM dysbiosis and reduced faecal SCFA to PE and demonstrate that butyrate can directly regulate BP in vivo, suggesting its potential as a therapeutic agent for PE.


Author(s):  
Tindaro Bongiovanni ◽  
Marilyn Ong Li Yin ◽  
Liam Heaney

AbstractShort-chain fatty acids (SCFAs) are metabolites produced in the gut via microbial fermentation of dietary fibers referred to as microbiota-accessible carbohydrates (MACs). Acetate, propionate, and butyrate have been observed to regulate host dietary nutrient metabolism, energy balance, and local and systemic immune functions. In vitro and in vivo experiments have shown links between the presence of bacteria-derived SCFAs and host health through the blunting of inflammatory processes, as well as purported protection from the development of illness associated with respiratory infections. This bank of evidence suggests that SCFAs could be beneficial to enhance the athlete’s immunity, as well as act to improve exercise recovery via anti-inflammatory activity and to provide additional energy substrates for exercise performance. However, the mechanistic basis and applied evidence for these relationships in humans have yet to be fully established. In this narrative review, we explore the existing knowledge of SCFA synthesis and the functional importance of the gut microbiome composition to induce SCFA production. Further, changes in gut microbiota associated with exercise and various dietary MACs are described. Finally, we provide suggestions for future research and practical applications, including how these metabolites could be manipulated through dietary fiber intake to optimize immunity and energy metabolism.


1978 ◽  
Vol 40 (1) ◽  
pp. 125-131 ◽  
Author(s):  
J. D. Edwards-Webb ◽  
S. Y. Thompson

1. The lipolysis of cow's milk fat by salivary lipase (EC 3.1.1.3) in the preruminant calf has been studied in vitro by a simulated abomasal digestion, and also in vivo by examining the abomasal effluent collected over 12 h after giving whole milk to a calf.2. In the in vitro experiment the liquid drained from the clot contained a higher proportion of short-chain fatty acids than the abomasal effluent in the in vivo experiment. This was considered to indicate the absorption of short-chain free fatty acids from within the abomasum.3. Preferential release of short-chain fatty acids both in vitro and in vivo was observed.4. The outflow of butyric acid from the abomasum of the calf was initially rapid, but had levelled off at approximately 6 h, whereas the outflow of a typical long-chain fatty acid (palmitic) was fairly constant over the 12 h.Butyric acid predominated in the free fatty acids of abomasal effluent 0.5 h after feeding (668 mmol/mol total free fatty acids) but had become a minor component by 12 h (15 mmol/mol total free fatty acids).5. The mean amounts of free and esterified fatty acids (mmol/mol fatty acid ingested) present in the abomasal effluent from the 12 h collection period were: triglyceride 465, diglyceride 215, monoglyceride 68, free fatty acid 252. These values showed that only one-third of esterified fatty acids ingested are lipolysed to absorbable products by salivary lipase.


2020 ◽  
Vol 21 (2) ◽  
pp. 445 ◽  
Author(s):  
Sini Kang ◽  
Hyun Ju You ◽  
Yeong-Geun Lee ◽  
Yunju Jeong ◽  
Tony V. Johnston ◽  
...  

Short-chain fatty acids (SCFAs), especially butyrate, produced in mammalian intestinal tracts via fermentation of dietary fiber, are known biofunctional compounds in humans. However, the variability of fermentable fiber consumed on a daily basis and the diversity of gut microbiota within individuals often limits the production of short-chain fatty acids in the human gut. In this study, we attempted to enhance the butyrate levels in human fecal samples by utilizing butyl-fructooligosaccharides (B-FOS) as a novel prebiotic substance. Two major types of B-FOS (GF3-1B and GF3-2B), composed of short-chain fructooligosaccharides (FOS) bound to one or two butyric groups by ester bonds, were synthesized. Qualitative analysis of these B-FOS using Fourier transform infrared (FT-IR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), nuclear magnetic resonance (NMR) and low-resolution fast-atom bombardment mass spectra (LR-FAB-MS), showed that the chemical structure of GF3-1B and GF3-2B were [O-(1-buty-β-D-fru-(2→1)-O-β-D-fru-(2→1)-O-β-D-fru-O-α-D-glu] and [O-(1-buty)-β-D-fru-(2→1)-O-β-D-fru-(2→1)-O-(4-buty)-β-D-fru-O-α-D-glu], respectively. The ratio of these two compounds was approximately 5:3. To verify their biofunctionality as prebiotic oligosaccharides, proliferation and survival patterns of human fecal microbiota were examined in vitro via 16S rRNA metagenomics analysis compared to a positive FOS control and a negative control without a carbon source. B-FOS treatment showed different enrichment patterns on the fecal microbiota community during fermentation, and especially stimulated the growth of major butyrate producing bacterial consortia and modulated specific butyrate producing pathways with significantly enhanced butyrate levels. Furthermore, the relative abundance of Fusobacterium and ammonia production with related metabolic genes were greatly reduced with B-FOS and FOS treatment compared to the control group. These findings indicate that B-FOS differentially promotes butyrate production through the enhancement of butyrate-producing bacteria and their metabolic genes, and can be applied as a novel prebiotic compound in vivo.


Sign in / Sign up

Export Citation Format

Share Document