197. Computer-controlled sweep-frequency eddycurrent instrument for obtaining electrical conductivity vs depth data on oxidized graphite

Carbon ◽  
1984 ◽  
Vol 22 (2) ◽  
pp. 226
Author(s):  
J.M. Prince ◽  
D.L. Lessor
2001 ◽  
Vol 691 ◽  
Author(s):  
Sim Loo ◽  
Sangeeta Lal ◽  
Theodora Kyratsi ◽  
Duck-Young Chung ◽  
Kuei-Fang Hsu ◽  
...  

ABSTRACTNew thermoelectric bulk materials such as CsBi4Te6 have shown superior properties to traditional materials, however, optimal performance requires continuing investigations of doping and alloying trends. A recently modified high throughput measurement system is presented for doping and alloying investigations in several new thermoelectric materials. The modification includes a four-probe configuration for more accurate measurements while maintaining a relatively short sample preparation time. The system is fully computer controlled and provides flexible contacts to accommodate various sample dimensions. Optimal compositions are then identified for further investigations in thermoelectric prototype modules. The most promising materials will be further characterized for electrical conductivity, thermoelectric power, thermal conductivity, and Hall effect measurements as a function of temperature.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Nur Munirah Abdullah ◽  
Anika Zafiah Mohd Rus ◽  
M. F. L. Abdullah

The synthesis and characterization of waterborne polyurethane-based oxidized graphite- (WPUG-) reinforced composites is disclosed. The morphology-structure relations of WPUG composites are studied using field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR) spectroscopy. Prior to this, it is confirmed that, in the WPUG composites, the graphite particles containing functional groups such as hydroxyl and carboxylic groups are randomly distributed and attributed to the formation of interconnected interface within the polymeric composites. This promotes enhancement in modulus and tensile strength up to ∼440% and ∼100%, respectively. Significantly, these results were correlated with viscoelastic properties in which the composites show positive response to graphite addition. Further studies in optical properties consequently attribute decreasing values in optical energy band gap (Eg) which afterwards took the leads to electrical conductivity (σ). Aptly, the composites WPUG20, WPUG25, and WPUG30 were found to possess favorable electrical conductivity through the two-point probe method. This revealed the improvement in electrical properties with promising potential as alternative petroleum-based composites to generate energy from the renewable resources and also apply greener ways for energy consumption.


Author(s):  
John C. Russ ◽  
Nicholas C. Barbi

The rapid growth of interest in attaching energy-dispersive x-ray analysis systems to transmission electron microscopes has centered largely on microanalysis of biological specimens. These are frequently either embedded in plastic or supported by an organic film, which is of great importance as regards stability under the beam since it provides thermal and electrical conductivity from the specimen to the grid.Unfortunately, the supporting medium also produces continuum x-radiation or Bremsstrahlung, which is added to the x-ray spectrum from the sample. It is not difficult to separate the characteristic peaks from the elements in the specimen from the total continuum background, but sometimes it is also necessary to separate the continuum due to the sample from that due to the support. For instance, it is possible to compute relative elemental concentrations in the sample, without standards, based on the relative net characteristic elemental intensities without regard to background; but to calculate absolute concentration, it is necessary to use the background signal itself as a measure of the total excited specimen mass.


Author(s):  
Klaus-Ruediger Peters ◽  
Samuel A. Green

High magnification imaging of macromolecules on metal coated biological specimens is limited only by wet preparation procedures since recently obtained instrumental resolution allows visualization of topographic structures as smal l as 1-2 nm. Details of such dimensions may be visualized if continuous metal films with a thickness of 2 nm or less are applied. Such thin films give sufficient contrast in TEM as well as in SEM (SE-I image mode). The requisite increase in electrical conductivity for SEM of biological specimens is achieved through the use of ligand mediated wet osmiuum impregnation of the specimen before critical point (CP) drying. A commonly used ligand is thiocarbohvdrazide (TCH), first introduced to TEM for en block staining of lipids and glvcomacromolecules with osmium black. Now TCH is also used for SEM. However, after ligand mediated osinification nonspecific osmium black precipitates were often found obscuring surface details with large diffuse aggregates or with dense particular deposits, 2-20 nm in size. Thus, only low magnification work was considered possible after TCH appl ication.


Author(s):  
M.D. Coutts ◽  
E.R. Levin ◽  
J.G. Woodward

While record grooves have been studied by transmission electron microscopy with replica techniques, and by optical microscopy, the former are cumbersome and restricted and the latter limited by lack of depth of focus and resolution at higher magnification. With its great depth of focus and ease in specimen manipulation, the scanning electron microscope is admirably suited for record wear studies.A special RCA sweep frequency test record was used with both lateral and vertical modulation bands. The signal is a repetitive, constant-velocity sweep from 2 to 20 kHz having a duration and repetitive rate of approximately 0.1 sec. and a peak velocity of 5.5 cm/s.A series of different pickups and numbers of plays were used on vinyl records. One centimeter discs were then cut out, mounted and coated with 200 Å of gold to prevent charging during examination. Wear studies were made by taking micrographs of record grooves having 1, 10 and 50 plays with each stylus and comparing with typical “no-play” grooves. Fig. 1 shows unplayed grooves in a vinyl pressing with sweep-frequency modulation in the lateral mode.


Author(s):  
M.F. Schmid ◽  
R. Dargahi ◽  
M. W. Tam

Electron crystallography is an emerging field for structure determination as evidenced by a number of membrane proteins that have been solved to near-atomic resolution. Advances in specimen preparation and in data acquisition with a 400kV microscope by computer controlled spot scanning mean that our ability to record electron image data will outstrip our capacity to analyze it. The computed fourier transform of these images must be processed in order to provide a direct measurement of amplitudes and phases needed for 3-D reconstruction.In anticipation of this processing bottleneck, we have written a program that incorporates a menu-and mouse-driven procedure for auto-indexing and refining the reciprocal lattice parameters in the computed transform from an image of a crystal. It is linked to subsequent steps of image processing by a system of data bases and spawned child processes; data transfer between different program modules no longer requires manual data entry. The progress of the reciprocal lattice refinement is monitored visually and quantitatively. If desired, the processing is carried through the lattice distortion correction (unbending) steps automatically.


Author(s):  
R. J. Lee ◽  
J. S. Walker

Electron microscopy (EM), with the advent of computer control and image analysis techniques, is rapidly evolving from an interpretative science into a quantitative technique. Electron microscopy is potentially of value in two general aspects of environmental health: exposure and diagnosis.In diagnosis, electron microscopy is essentially an extension of optical microscopy. The goal is to characterize cellular changes induced by external agents. The external agent could be any foreign material, chemicals, or even stress. The use of electron microscopy as a diagnostic tool is well- developed, but computer-controlled electron microscopy (CCEM) has had only limited impact, mainly because it is fairly new and many institutions lack the resources to acquire the capability. In addition, major contributions to diagnosis will come from CCEM only when image analysis (IA) and processing algorithms are developed which allow the morphological and textural changes recognized by experienced medical practioners to be quantified. The application of IA techniques to compare cellular structure is still in a primitive state.


Author(s):  
Robert W. Mackin

This paper presents two advances towards the automated three-dimensional (3-D) analysis of thick and heavily-overlapped regions in cytological preparations such as cervical/vaginal smears. First, a high speed 3-D brightfield microscope has been developed, allowing the acquisition of image data at speeds approaching 30 optical slices per second. Second, algorithms have been developed to detect and segment nuclei in spite of the extremely high image variability and low contrast typical of such regions. The analysis of such regions is inherently a 3-D problem that cannot be solved reliably with conventional 2-D imaging and image analysis methods.High-Speed 3-D imaging of the specimen is accomplished by moving the specimen axially relative to the objective lens of a standard microscope (Zeiss) at a speed of 30 steps per second, where the stepsize is adjustable from 0.2 - 5μm. The specimen is mounted on a computer-controlled, piezoelectric microstage (Burleigh PZS-100, 68/μm displacement). At each step, an optical slice is acquired using a CCD camera (SONY XC-11/71 IP, Dalsa CA-D1-0256, and CA-D2-0512 have been used) connected to a 4-node array processor system based on the Intel i860 chip.


Author(s):  
Marc J.C. de Jong ◽  
P. Emile S.J. Asselbergs ◽  
Max T. Otten

A new step forward in Transmission Electron Microscopy has been made with the introduction of the CompuStage on the CM-series TEMs: CM120, CM200, CM200 FEG and CM300. This new goniometer has motorization on five axes (X, Y, Z, α, β), all under full computer control by a dedicated microprocessor that is in communication with the main CM processor. Positions on all five axes are read out directly - not via a system counting motor revolutions - thereby providing a high degree of accuracy. The CompuStage enters the octagonal block around the specimen through a single port, allowing the specimen stage to float freely in the vacuum between the objective-lens pole pieces, thereby improving vibration stability and freeing up one access port. Improvements in the mechanical design ensure higher stability with regard to vibration and drift. During stage movement the holder O-ring no longer slides, providing higher drift stability and positioning accuracy as well as better vacuum.


Sign in / Sign up

Export Citation Format

Share Document