Lipid metabolism in isolated adipose tissue of the domestic pig (Sus domesticus)

1968 ◽  
Vol 26 (3) ◽  
pp. 1081-1089 ◽  
Author(s):  
E.K. O'Hea ◽  
G.A. Leveille
2020 ◽  
Author(s):  
G Lenihan-Geels ◽  
F Garcia-Carrizo ◽  
C Li ◽  
M Oster ◽  
A Prokesch ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
L. Irasema Chávaro-Ortiz ◽  
Brenda D. Tapia-Vargas ◽  
Mariel Rico-Hidalgo ◽  
Ruth Gutiérrez-Aguilar ◽  
María E. Frigolet

Abstract Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand, through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High Fat diet, added with or without TP (3g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed, and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high fat diet, reduced visceral adipose tissue weight, and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.


1961 ◽  
Vol 200 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Judith K. Patkin ◽  
E. J. Masoro

Cold acclimation is known to alter hepatic lipid metabolism. Liver slices from cold-acclimated rats have a greatly depressed capacity to synthesize long-chain fatty acids from acctate-1-C14. Since adipose tissue is the major site of lipogenic activity in the intact animal, its fatty acid synthetic capacity was studied. In contrast to the liver, it was found that adipose tissue from the cold-acclimated rat synthesized three to six times as much long-chain fatty acids per milligram of tissue protein as the adipose tissue from the control rat living at 25°C. Evidence is presented indicating that adipose tissue from cold-acclimated and control rats esterify long-chain fatty acids at the same rate. The ability of adipose tissue to oxidize palmitic acid to CO2 was found to be unaltered by cold acclimation. The fate of the large amount of fatty acid synthesized in the adipose tissue of cold-acclimated rats is discussed.


2021 ◽  
Vol 331 ◽  
pp. e4
Author(s):  
B.E. Suur ◽  
M. Chemaly ◽  
H. Jin ◽  
M. Kronqvist ◽  
M. Lengquist ◽  
...  

2011 ◽  
Vol 96 (7) ◽  
pp. E1188-E1196 ◽  
Author(s):  
Jing Ting Zhao ◽  
Mark J. Cowley ◽  
Paul Lee ◽  
Vita Birzniece ◽  
Warren Kaplan ◽  
...  

2008 ◽  
Vol 295 (6) ◽  
pp. E1358-E1368 ◽  
Author(s):  
Cynthia F. Zizola ◽  
Gary J. Schwartz ◽  
Silke Vogel

Cellular retinol-binding protein (CRBP) type III (CRBP-III) belongs to the family of intracellular lipid-binding proteins, which includes the adipocyte-binding protein aP2. In the cytosol, CRBP-III binds retinol, the precursor of retinyl ester and the active metabolite retinoic acid. The goal of the present work is to understand the regulation of CRBP-III expression and its role in lipid metabolism. Using EMSAs, luciferase reporter assays, and chromatin immunoprecipitation assays, we found that CRBP-III is a direct target of peroxisome proliferator-activated receptor-γ (PPARγ). Moreover, CRBP-III expression was induced in adipose tissue of mice after treatment with the PPARγ agonist rosiglitazone. To examine a potential role of CRBP-III in regulating lipid metabolism in vivo, CRBP-III-deficient (C-III-KO) mice were maintained on a high-fat diet (HFD). Hepatic steatosis was decreased in HFD-fed C-III-KO compared with HFD-fed wild-type mice. These differences were partly explained by decreased serum free fatty acid levels and decreased free fatty acid efflux from adipose tissue of C-III-KO mice. In addition, the lack of CRBP-III was associated with reduced food intake, increased respiratory energy ratio, and altered body composition, with decreased adiposity and increased lean body mass. Furthermore, expression of genes involved in mitochondrial fatty acid oxidation in brown adipose tissue was increased in C-III-KO mice, and C-III-KO mice were more cold tolerant than wild-type mice fed an HFD. In summary, we demonstrate that CRBP-III is a PPARγ target gene and plays a role in lipid and whole body energy metabolism.


Sign in / Sign up

Export Citation Format

Share Document