Dynamics of reduction enzymes involved in the denitrification process in pasture soil

1994 ◽  
Vol 26 (11) ◽  
pp. 1501-1506 ◽  
Author(s):  
L. Dendooven ◽  
J.M. Anderson
2006 ◽  
Vol 6 (2) ◽  
pp. 125-130
Author(s):  
C.-H. Hung ◽  
K.-H. Tsai ◽  
Y.-K. Su ◽  
C.-M. Liang ◽  
M.-H. Su ◽  
...  

Due to the extensive application of artificial nitrogen-based fertilizers on land, groundwater from the central part of Taiwan faces problems of increasing concentrations of nitrate, which were measured to be well above 30 mg/L all year round. For meeting the 10 mg/L nitrate standard, optimal operations for a heterotrophic denitrification pilot plant designed for drinking water treatment was investigated. Ethanol and phosphate were added for bacteria growing on anthracite to convert nitrate to nitrogen gas. Results showed that presence of high dissolved oxygen (around 4 mg/L) in the source water did not have a significantly negative effect on nitrogen removal. When operated under a C/N ratio of 1.88, which was recommended in the literature, nitrate removal efficiency was measured to be around 70%, sometimes up to 90%. However, the reactor often underwent severe clogging problems. When operated under C/N ratio of 1.0, denitrification efficiency decreased significantly to 30%. Finally, when operated under C/N ratio of 1.5, the nitrate content of the influent was almost completely reduced at the first one-third part of the bioreactor with an overall removal efficiency of 89–91%. Another advantage for operating with a C/N ratio of 1.5 is that only one-third of the biosolids was produced compared to a C/N value of 1.88.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 85-92 ◽  
Author(s):  
Ingemar Karlsson ◽  
Gunnar Smith

Chemically coagulated sewage water gives an effluent low in both suspended matter and organics. To use chemical precipitation as the first step in waste water treatment improves nitrification in the following biological stage. The precipitated sludge contains 75% of the organic matter in the sewage and can by hydrolysis be converted to readily degradable organic matter, which presents a valuable carbon source for the denitrification process. This paper will review experiences from full-scale applications as well as pilot-plant and laboratory studies.


1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


1994 ◽  
Vol 122 (1) ◽  
pp. 91-105 ◽  
Author(s):  
M. L. Nguyen ◽  
K. M. Goh

SUMMARYA field plot experiment of 271 days duration was conducted on New Zealand irrigated pastures, commencing in the summer (January) 1988, on a Templeton silt loam soil (Udic Ustochrept) by applying 35sulphur (35S)-labelled urine (250 μCi/g S with 1300 μg S/ml) to field plots (600 × 600 mm) at a rate equivalent to that normally occurring in sheep urine patches (150 ml/0·03 m2) to investigate the distribution, transformations and recovery of urinary S in pasture soil–plant systems and sources of plant-available soil S as influenced by the available soil moisture at the time of urine application and varying amounts of applied irrigation water. Results obtained showed that c. 55–90% of 35S-labelled urine was incorporated into soil sulphate (SO42−), ester SO42− and carbon (C)-bonded S fractions within the major plant rooting zone (0–300 mm), as early as 27 days after urine application. Hydriodic acid (Hl)-reducible and C-bonded soil S fractions showed no consistent trend of incorporation. On day 271, labelled-S was found in soil SO42−, Hl-reducible S and C-bonded S fractions to a soil depth of 500 mm, indicating that not only SO42− but also organic S fractions from soils and 35S-labelled urine were leached beyond the major rooting zone. A large proportion (c. 59–75%) of 35S-labelled urine was not recovered in pasture soil–plant systems over a 271-day period, presumably due to leaching losses beyond the 0–300 mm soil depth. This estimated leaching loss was comparable to that (75%) predicted using the S model developed by the New Zealand Ministry of Agriculture. The recovery of urinary S in soil–plant systems over a 271-day period was not affected by different amounts of irrigation water applied 7 days after urine application to soil at either 50 or 75% available water holding capacity (AWHC). However, significantly lower S recovery occurred when urinary S was applied to the soil at 25% AWHC than at field capacity, suggesting that urinary S applied at field capacity might not have sufficient time to be adsorbed by soil particles, enter soil micropores or be immobilized by soil micro-organisms. Both soil ester SO42− and calcium phosphate-extractable soil S in urine-treated soils were found to be major S sources for pasture S uptake. Labelled S from 35S-labelled urine accounted for c. 12–47% of total S in pasture herbage.


2014 ◽  
Vol 665 ◽  
pp. 487-490
Author(s):  
Te Wang ◽  
Zhao Xia Liu ◽  
Mei Juan Wu ◽  
Fu Hui Kang ◽  
Qing Chen ◽  
...  

A bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of ammonia-nitrogen was screened and identified and the denitrification property was investigated in this paper. The strain was isolated from aeration tank of wastewater disposed by activated sludge and analyzed and identified by 16S rDNA. The effects of different carbon sources and carbon and nitrogen mass ratios on denitrification rate were studied. The changes of various forms of ammonia-nitrogens during the simultaneous heterotrophic nitrification and aerobic denitrification process were characterized. A strain capable of simultaneous heterotrophic nitrification and aerobic denitrification at 600 mg/L nitrogen concentration has been isolated and screened. Comparison of its 16S rDNA sequence showed 100% similarity to Bacillus licheniformis strain Lr124/6. The strain was named as Bacillus sp. A22. The optimal conditions for degradation of ammonia-nitrogen by Bacillus sp. A22 were trisodium citrate as carbon source and carbon and nitrogen mass ratios of 10. The denitrification rate was 98.2% after 96 h of culture under the optimal conditions and there was hardly any intermediates accumulation in the denitrification process. It has practical applications that the denitrification can be performed efficiently at high concentrations of ammonia-nitrogen by method of simultaneous heterotrophic nitrification and aerobic denitrification by Bacillus sp. A22 in nitrogen purification treatment of wastewater with high concentrations of ammonia-nitrogen.


Sign in / Sign up

Export Citation Format

Share Document