Desorption kinetics of condensed two-dimensional phases on a single crystal substrate

1977 ◽  
Vol 68 ◽  
pp. 346
Author(s):  
G Le Lay ◽  
M Manneville ◽  
R Kern
1987 ◽  
Vol 94 ◽  
Author(s):  
Y. Kouh Simpson ◽  
E. G. Colgan ◽  
C. B. Carter

ABSTRACTUsing a planar thin-film specimen geometry, the growth kinetics of the spinel in NiOAl2O3 system has been studied with Rutherford backscattering spectroscopy. A thin-layer of Ni film is deposited by the electron-beam deposition technique onto single-crystal alumina substrates of different orientations including, (0001), {1120}, {1102} and {1100}. The subsequent heat-treatment in air then converts the Ni to NiO, thus producing a uniform layer of NiO with good adhesion between the NiO and the alumina. The kinetics of the Ni-Al spinel growth has been found to be different for different single-crystal substrate orientations. The kinetics behavior follows a parabolic growth-rate law for each orientation but shows a different reaction-rate constant. X-ray diffraction and transmission electron microscopy have been used as complementary techniques to confirm the phases that form at each stage of the heat treatment and the corresponding microstructures of the thin-film layers respectively.


2006 ◽  
Vol 89 (23) ◽  
pp. 232906 ◽  
Author(s):  
X. Y. Zhou ◽  
T. Heindl ◽  
G. K. H. Pang ◽  
J. Miao ◽  
R. K. Zheng ◽  
...  

2009 ◽  
Vol 11 (2) ◽  
pp. 106-118 ◽  
Author(s):  
Sui Liang Huang

Based on previous work on the transport–transformation model of heavy metal pollutants in fluvial rivers, this paper presents the formulation of a two-dimensional model to describe chemical transport–transformation in fluvial rivers by considering basic principles of environmental chemistry, hydraulics and mechanics of sediment transport and recent developments along with three very simplified test cases. The model consists of water flow governing equations, sediment transport governing equations, transport–transformation equation of chemicals and convection–diffusion equations of sorption–desorption kinetics of particulate chemical concentrations on suspended load, bed load and bed sediment. The chemical transport–transformation equation is basically a mass balance equation. It demonstrates how sediment transport affects transport–transformation of chemicals in fluvial rivers. The convection–diffusion equations of sorption–desorption kinetics of chemicals, being an extension of batch reactor experimental results, take both physical transport, i.e. convection and diffusion, and chemical reactions, i.e. sorption–desorption into account. The effects of sediment transport on chemical transport–transformation were clarified through three simple examples. Specifically, the transport–transformation of chemicals in a steady, uniform and equilibrium sediment-laden flow was calculated by applying this model, and results were shown to be rational. Both theoretical analysis and numerical simulation indicated that the transport–transformation of chemicals in sediment-laden flows with a clay-enriched riverbed possesses not only the generality of common tracer pollutants, but also characteristics of transport–transformation induced by sediment motion. Future work will be conducted to present the validation/application of the model with available data.


2020 ◽  
Vol 65 (3) ◽  
pp. 299-304
Author(s):  
O. N. Makarevich ◽  
A. V. Ivanov ◽  
A. I. Gavrilov ◽  
A. M. Makarevich ◽  
O. V. Boytsova

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2068 ◽  
Author(s):  
Yusuke Yabara ◽  
Seiichiro Izawa ◽  
Masahiro Hiramoto

In this study, the operation of donor/acceptor photovoltaic cells fabricated on homoepitaxially grown p-doped rubrene single-crystal substrates is demonstrated. The photocurrent density is dominated by the sheet conductivity (σ□) of the p-type single-crystal layer doped to 100 ppm with an iron chloride (Fe2Cl6) acceptor. A 65 μm thick p-type rubrene single-crystal substrate is expected to be required for a photocurrent density of 20 mA·cm−2. An entire bulk doping technique for rubrene single crystals is indispensable for the fabrication of practical organic single-crystal solar cells.


Sign in / Sign up

Export Citation Format

Share Document