7173. Mechanical and electrical properties of rf sputtered LaB6 thin films on glass substrates

Vacuum ◽  
1991 ◽  
Vol 42 (8-9) ◽  
pp. 566-567
Vacuum ◽  
1990 ◽  
Vol 41 (4-6) ◽  
pp. 1224-1228 ◽  
Author(s):  
T Kajiwara ◽  
T Urakabe ◽  
K Sano ◽  
K Fukuyama ◽  
K Watanabe ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 697
Author(s):  
Yu-He Liu ◽  
Xiao-Yan Liu ◽  
Hui Sun ◽  
Bo Dai ◽  
Peng Zhang ◽  
...  

Here, the electrical properties of NiO thin films grown on glass and Al2O3 (0001) substrates have been investigated. It was found that the resistivity of NiO thin films strongly depends on oxygen stoichiometry. Nearly perfect stoichiometry yields extremely high resistivity. In contrast, off-stoichiometric thin films possess much lower resistivity, especially for oxygen-rich composition. A side-by-side comparison of energy loss near the edge structure spectra of Ni L3 edges between our NiO thin films and other theoretical spectra rules out the existence of Ni3+ in NiO thin films, which contradicts the traditional hypothesis. In addition, epitaxial NiO thin films grown on Al2O3 (0001) single crystal substrates exhibit much higher resistivity than those on glass substrates, even if they are deposited simultaneously. This feature indicates the microstructure dependence of electrical properties.


2013 ◽  
Vol 652-654 ◽  
pp. 519-522
Author(s):  
Jun Chen ◽  
Yue Hui Hu ◽  
Hong Hao Hu ◽  
Yi Chuan Chen

Transparent thin films of Sn-doped ZnO (ZnO:Sn) were deposited onto silica glass substrates by the sol–gel method. The effect of different Sn doping on the crystallinity, structural, optical and electrical properties of ZnO:Sn thin films were investigated by XRD, SEM, UV-VIS spectrophotometer and four-point probe method respectively. Among all of ZnO:Sn thin films in this paper, Sn-doped with 2 at.% exhibited the best properties, the surface demonstrate an accumulative crystallization and hexagonal structure, with a high-preferential c-axis orientation, namely an average transmittance of 90% and the resistivity of 19.6 Ω·cm.


2011 ◽  
Vol 04 (04) ◽  
pp. 401-405 ◽  
Author(s):  
W. CHER ◽  
S. YICK ◽  
S. XU ◽  
Z. J. HAN ◽  
K. OSTRIKOV

Al -doped zinc oxide (AZO) thin films are deposited onto glass substrates using radio-frequency reactive magnetron sputtering and the improvements in their physical properties by post-synthesis thermal treatment are reported. X-ray diffraction spectra show that the structure of films can be controlled by adjusting the annealing temperatures, with the best crystallinity obtained at 400°C under a nitrogen atmosphere. These films exhibit improved quality and better optical transmittance as indicated by the UV-Vis spectra. Furthermore, the sheet resistivity is found to decrease from 1.87 × 10-3 to 5.63 × 10-4Ω⋅cm and the carrier mobility increases from 6.47 to 13.43 cm2 ⋅ V-1 ⋅ s-1 at the optimal annealing temperature. Our results demonstrate a simple yet effective way in controlling the structural, optical and electrical properties of AZO thin films, which is important for solar cell applications.


1981 ◽  
Vol 4 ◽  
Author(s):  
G. Auvert ◽  
D. Bensahel ◽  
A. Perio ◽  
F. Morin ◽  
G.A. Rozgonyi ◽  
...  

ABSTRACTExplosive Crystallization occurs in cw laser annealing on a-Si films deposited on glass substrates at laser scan speeds higher than 30 cm/sec. Optical, structural and electrical properties of the crystallized films at various laser scan speeds confirm the existence of two kinds of explosive growth depending on the state of crystallinity of the starting material.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1183
Author(s):  
Peiyu Wang ◽  
Xin Wang ◽  
Fengyin Tan ◽  
Ronghua Zhang

Molybdenum disulfide (MoS2) thin films were deposited at different temperatures (150 °C, 225 °C, 300 °C, 375 °C, and 450 °C) on quartz glass substrates and silicon substrates using the RF magnetron sputtering method. The influence of deposition temperature on the structural, optical, electrical properties and deposition rate of the obtained thin films was investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), Raman, absorption and transmission spectroscopies, a resistivity-measuring instrument with the four-probe method, and a step profiler. It was found that the MoS2 thin films deposited at the temperatures of 150 °C, 225 °C, and 300 °C were of polycrystalline with a (101) preferred orientation. With increasing deposition temperatures from 150 °C to 300 °C, the crystallization quality of the MoS2 thin films was improved, the Raman vibrational modes were strengthened, the deposition rate decreased, and the optical transmission and bandgap increased. When the deposition temperature increased to above 375 °C, the molecular atoms were partially combined with oxygen atoms to form MoO3 thin film, which caused significant changes in the structural, optical, and electrical properties of the obtained thin films. Therefore, it was necessary to control the deposition temperature and reduce the contamination of oxygen atoms throughout the magnetron sputtering process.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
J. Santos Cruz ◽  
S. A. Mayén Hernández ◽  
F. Paraguay Delgado ◽  
O. Zelaya Angel ◽  
R. Castanedo Pérez ◽  
...  

Effects on the optical, electrical, and photocatalytic properties of undoped CuS thin films nanodisks vacuum annealed at different temperatures were investigated. The chemical bath prepared CuS thin films were obtained at 40°C on glass substrates. The grain size of13.5±3.5 nm was computed directly from high-resolution transmission electron microscopy (HRTEM) images. The electrical properties were measured by means of both Hall effect at room temperature and dark resistivity as a function of the absolute temperature 100–330 K. The activation energy values were calculated as 0.007, 0.013, and 0.013 eV for 100, 150, and 200°C, respectively. The energy band gap of the films varied in the range of 1.98 up to 2.34 eV. The photocatalytic activity of the CuS thin film was evaluated by employing the degradation of aqueous methylene blue solution in the presence of hydrogen peroxide. The CuS sample thin film annealed in vacuum at 150°C exhibited the highest photocatalytic activity in presence of hydrogen peroxide.


Author(s):  
Genta Nakauchi ◽  
Shota Akasaki ◽  
Hideo Miura

Abstract The variation of their crystallinity, in other words, the order of atom arrangement of grain boundaries in electroplated gold thin films was investigated by changing their manufacturing conditions. Then, the effect of the crystallinity on both their mechanical and electrical properties was measured by using nano-indentation test and electromigration test. The crystallinity of the gold thin films was varied by changing the under-layer material used for electroplating. Also, the micro texture of gold thin films was evaluated by EBSD (Electron Back-Scatter Diffraction) and XRD (X-Ray Diffraction). It was clarified that the crystallinity of the electroplated gold thin films changed drastically depending on the crystallinity of the under-layer materials and electroplating conditions such as current density and temperature. This variation of the crystallinity should have caused wide variation of mechanical properties of the films. In addition, their mechanical properties such as Young’s modulus and hardness showed wide variation by about 3 times comparing with those of bulk gold. Similarly, the EM resistance of the electroplated gold bumps varied drastically depending on the ratio of porous grain boundaries and their crystallinity. Both the ratio and crystallinity also varied depending on the crystallinity of the under layer and electroplating conditions. The effective lifetime of the gold bumps was successfully predicted by considering both the crystallinity and residual stress of fine gold bumps. The lifetime varied more than 10 times as a strong function of the crystallinity of grain boundaries in the fine bumps. Therefore, it is very important to control the crystallinity of the under-layer for electroplating in order to control the distribution of the mechanical properties and reliability of the electroplated gold thin films.


Sign in / Sign up

Export Citation Format

Share Document