The role of lipoprotein cholesterol in biliary steroid secretion. Studies with in vivo experimental models

1995 ◽  
Vol 34 (1) ◽  
pp. 71-97 ◽  
Author(s):  
Kathleen M. Botham ◽  
Elena Bravo
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinjini Chakraborty ◽  
Veronika Eva Winkelmann ◽  
Sonja Braumüller ◽  
Annette Palmer ◽  
Anke Schultze ◽  
...  

AbstractSingular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shashank Kumar ◽  
Kumari Sunita Prajapati ◽  
Mohd Shuaib ◽  
Prem Prakash Kushwaha ◽  
Hardeep Singh Tuli ◽  
...  

In the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2–62 µM while in vivo efficacy was studied in the range of 20–500 mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-κB, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
H. M. Semchyshyn

There is compelling evidence that long-term intake of excessive fructose can have deleterious side effects in different experimental models. However, the role of fructosein vivoremains controversial, since acute temporary application of fructose is found to protect yeast as well as animal tissues against exogenous oxidative stress. This review suggests the involvement of reactive carbonyl and oxygen species in both the cytotoxic and defensive effects of fructose. Potential mechanisms of the generation of reactive species by fructose in the nonenzymatic reactions, their implication in the detrimental and protective effects of fructose are discussed.


Author(s):  
Jose M. Muñoz-Felix ◽  
Barbara Oujo ◽  
Jose M. Lopez-Novoa

Tubulointerstitial fibrosis and glomerulosclerosis, are a major feature of end stage chronic kidney disease (CKD), characterised by an excessive accumulation of extracellular matrix (ECM) proteins. Transforming growth factor beta-1 (TGF-β1) is a cytokine with an important role in many steps of renal fibrosis such as myofibroblast activation and proliferation, ECM protein synthesis and inflammatory cell infiltration. Endoglin is a TGF-β co-receptor that modulates TGF-β responses in different cell types. In numerous cells types, such as mesangial cells or myoblasts, endoglin regulates negatively TGF-β-induced ECM protein expression. However, recently it has been demonstrated that ‘in vivo’ endoglin promotes fibrotic responses. Furthermore, several studies have demonstrated an increase of endoglin expression in experimental models of renal fibrosis in the kidney and other tissues. Nevertheless, the role of endoglin in renal fibrosis development is unclear and a question arises: Does endoglin protect against renal fibrosis or promotes its development? The purpose of this review is to critically analyse the recent knowledge relating to endoglin and renal fibrosis. Knowledge of endoglin role in this pathology is necessary to consider endoglin as a possible therapeutic target against renal fibrosis.


2020 ◽  
Author(s):  
Federica Carbone ◽  
Justin K. Huang ◽  
Luigi Perelli ◽  
Edoardo Del Poggetto ◽  
Tony Gutschner ◽  
...  

AbstractDedifferentiation and acquisition of chromosomal instability in renal cell carcinoma portends dismal prognosis and aggressive clinical behavior. However, the absence of reliable experimental models dramatically impacts the understanding of mechanisms underlying malignant progression. Here we established an in vivo genetic platform to rapidly generate somatic mosaic genetically engineerd immune-competent mouse models of renal tumors, recapitulating the genomic and phenotypic features of these malignancies. Leveraging somatic chromosomal engineering, we demonstrated that ablation of the murine locus syntenic to human 9p21 drives the rapid expansion of aggressive mesenchymal clones with prominent metastatic behavior, characterized by early emergence of chromosomal instability, whole-genome duplication, and conserved patterns of aneuploidy. This model of punctuated equilibrium provides a remarkable example of cross-species convergent evolution.SignificanceTo better understand the role of 9p21 in malignant progression, we generated a somatic mosaic GEMM of renal cancer, capturing the histological, genomic and evolutionary features of human disease. With this technology we demonstrated a critica role of 9p21 loss in metastatic evolution of RCC and provide a unique tool for testing new therapeutic treatments.


2005 ◽  
Vol 289 (2) ◽  
pp. F227-F234 ◽  
Author(s):  
Christos Chatziantoniou ◽  
Jean-Claude Dussaule

Recent evidence suggests that the progression of renal fibrosis is a reversible process, at least in experimental models. The present review summarizes the new insights concerning the mechanisms of progression and regression of renal disease and examines this novel evidence under the light of feasibility and transfer to human nephropathies. The involved mechanisms are discussed with particular emphasis on the fibrotic role of vasoactive peptides such as angiotensin II and endothelin and growth factors such as transforming growth factor (TGF)-β. The possibility of regression is introduced by presenting the in vivo efficiency of antihypertensive treatments and of systems that antagonize the fibrogenic action of TGF-β such as bone morphogenic protein-7 and HGF. Finally, we provide a brief description of the promising future directions and clinical considerations about the applications of the experimental data to humans.


2020 ◽  
Vol 36 (1) ◽  
pp. 441-468
Author(s):  
Alice Lu-Culligan ◽  
Akiko Iwasaki

Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal–fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.


2015 ◽  
Vol 37 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Tomoyuki Takano

The neurobiological basis for autism remains poorly understood. However, the neuroinflammation processes play an important role in the induction of autistic behavioral changes. Microglial cells can exhibit widely differing functions during brain development, including synaptogenesis and stem cell proliferation, in addition to playing a role in the innate immunity. Mounting evidence indicates that microglial activation or dysfunction can profoundly affect neural development, resulting in neurodevelopmental disorders, including autism. These mechanisms in autism have been investigated using neuropathological studies of human autopsy brains, a large number of murine experimental models and in vivo neuroimaging studies of the human brain. The purpose of this review is to discuss microglial activation or dysfunction and to highlight the detrimental role that microglia play in the development of autism. The recent advances presented in this review support that further elucidation of the mechanisms and kinetics of microglial responses will help to establish a window for therapeutic intervention in individuals with autism.


2020 ◽  
Vol 27 (10) ◽  
pp. 1690-1710
Author(s):  
Félix Javier Jiménez-Jiménez ◽  
Hortensia Alonso-Navarro ◽  
Elena García-Martín ◽  
José A.G. Agúndez

Background: The pathophysiology and neurochemical mechanisms of essential tremor (ET) are not fully understood, because only a few post-mortem studies have been reported, and there is a lack of good experimental model for this disease. Objective: The main aim of this review is to update data regarding the neurochemical features of ET. Alterations of certain catecholamine systems, the dopaminergic, serotonergic, GABAergic, noradrenergic, and adrenergic systems have been described, and are the object of this revision. Methods: For this purpose, we performed a literature review on alterations of the neurotransmitter or neuromodulator systems (catecholamines, gammaaminobutyric acid or GABA, excitatory amino acids, adenosine, T-type calcium channels) in ET patients (both post-mortem or in vivo) or in experimental models resembling ET. Results and Conclusion: The most consistent data regarding neurochemistry of ET are related with the GABAergic and glutamatergic systems, with a lesser contribution of adenosine and dopaminergic and adrenergic systems, while there is not enough evidence of a definite role of other neurotransmitter systems in ET. The improvement of harmaline-induced tremor in rodent models achieved with T-type calcium channel antagonists, cannabinoid 1 receptor, sphingosine-1-phosphate receptor agonists, and gap-junction blockers, suggests a potential role of these structures in the pathogenesis of ET.


2018 ◽  
Vol 25 (3) ◽  
pp. 378-390 ◽  
Author(s):  
Dragan Hrncic ◽  
Aleksandra Rasic-Markovic ◽  
Duro Macut ◽  
Dusan Mladenovic ◽  
Veselinka Susic ◽  
...  

Background: Homocysteine and taurine are non-proteinogenic sulfur-containing amino acids with numerous important physiological roles. Homocysteine and taurine are considered to be neurotransmitters and neuromodulators, the first showing clear hyperexcitability role, while the second is known by its inhibitory and neuroprotective properties. Objective: In this article we addressed the role of homocysteine and its related metabolite homocysteine thiolactone in the development of seizures, focusing on its experimental models in vivo, potential mechanisms of proepileptogenic activity via interactions with glutamatergic neurotransmission, sodium pump activity, oxidative stress, cholinergic system and NO-mediated neuronal signaling, as well as the pharmacological and non-pharmacological approaches to modulate its proconvulsive activity. Additionally, herein we will focus on taurine neuroprotective effects linked with its anticonvulsive properties and mediated by taurine interactions with GABA-ergic and glutamatergic system and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document