Ion beam effects on the surface and near-surface composition of TaSi2

Author(s):  
S. Valeri ◽  
A. di Bona ◽  
G. Ottaviani ◽  
M. Procop
Author(s):  
Max L. Lifson ◽  
Carla M. Chapman ◽  
D. Philip Pokrinchak ◽  
Phyllis J. Campbell ◽  
Greg S. Chrisman ◽  
...  

Abstract Plan view TEM imaging is a powerful technique for failure analysis and semiconductor process characterization. Sample preparation for near-surface defects requires additional care, as the surface of the sample needs to be protected to avoid unintentionally induced damage. This paper demonstrates a straightforward method to create plan view samples in a dual beam focused ion beam (FIB) for TEM studies of near-surface defects, such as misfit dislocations in heteroepitaxial growths. Results show that misfit dislocations are easily imaged in bright-field TEM and STEM for silicon-germanium epitaxial growth. Since FIB tools are ubiquitous in semiconductor failure analysis labs today, the plan view method presented provides a quick to implement, fast, consistent, and straightforward method of generating samples for TEM analysis. While this technique has been optimized for near-surface defects, it can be used with any application requiring plan view TEM analysis.


1983 ◽  
Vol 23 ◽  
Author(s):  
G.J. Galvin ◽  
L.S. Hung ◽  
J.W. Mayer ◽  
M. Nastasi

ABSTRACTEnergetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.


1984 ◽  
Vol 33 ◽  
Author(s):  
D. J. Sharp ◽  
J. K. G. Panitz ◽  
C. H. Seager

ABSTRACTA combination of chemical etching and sheet resistivity measurements showed that intense (1.4 mA/cm2 ) low energy (1400 eV) ion beam hydrogenation of polycrystalline silicon having a columnar structure can produce electrical defect passivation to depths in the order of 100 μm. Transmission electron micrographs disclose surface and near-surface features resulting from the ion beam bombardment which suggest that one of the hydrogen transport mechanisms may be defect induced.


2007 ◽  
Vol 15 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Ben Lich

DualBeam instruments that combine the imaging capability of scanning electron microscopy (SEM) with the cutting and deposition capability of a focused ion beam (FIB) provide biologists with a powerful tool for investigating three-dimensional structure with nanoscale (1 nm-100 nm) resolution. Ever since Van Leeuwenhoek used the first microscope to describe bacteria more than 300 years ago, microscopy has played a central role in scientists' efforts to understand biological systems. Light microscopy is generally limited to a useful resolution of about a micrometer. More recently the use of confocal and electron microscopy has enabled investigations at higher resolution. Used with fluorescent markers, confocal microscopy can detect and localize molecular scale features, but its imaging resolution is still limited. SEM is capable of nanometer resolution, but is limited to the near surface region of the sample.


In s.i.m.s. the sample surface is ion bombarded and the emitted secondary ions are mass analysed. When used in the static mode with very low primary ion beam current densities (10 -11 A/mm 2 ), the technique analyses the outermost atomic layers with the following advantages (Benninghoven 1973, I975): the structural—chemical nature of the surface may be deduced from the masses of the ejected ionized clusters of atoms; detection of hydrogen and its compounds is possible; sensitivity is extremely high (10 -6 monolayer) for a number of elements. Composition profiles are obtained by increasing the primary beam current density (dynamic mode) or by combining the technique in the static mode with ion beam machining with a separate, more powerful ion source. The application of static s.i.m.s. in metallurgy has been explored by analysing a variety of alloy surfaces after fabrication procedures in relation to surface quality and subsequent performance. In a copper—silver eutectic alloy braze it was found that the composition of the solid surface depended markedly on its pretreatment. Generally there was a surface enrichment of copper relative to silver in melting processes while sawing and polishing enriched the surface in silver


2008 ◽  
Vol 4 (S251) ◽  
pp. 327-328
Author(s):  
Mau C. Wong ◽  
Tim Cassidy ◽  
Robert E. Johnson

AbstractThe presence of an undersurface ocean renders Europa as one of the few planetary bodies in our Solar System that has been conjectured to have possibly harbored life. Some of the organic and inorganic species present in the ocean underneath are expected to transport upwards through the relatively thin ice crust and manifest themselves as impurities of the water ice surface. For this reason, together with its unique dynamic atmosphere and geological features, Europa has attracted strong scientific interests in past decades.Europa is imbedded inside the Jovian magnetosphere, and, therefore, is constantly subjected to the immerse surrounding radiations, similar to the other three Galilean satellites. The magnetosphere-atmosphere-surface interactions form a complex system that provides a multitude of interesting geophysical phenomenon that is unique in the Solar System. The atmosphere of Europa is thought to have created by, mostly, charged particles sputtering of surface materials. Consequently, the study of Europa's atmosphere can be used as a tool to infer the surface composition. In this paper, we will discuss our recent model studies of Europa's near-surface atmosphere. In particular, the abundances and distributions of the dominant O2 and H2O species, and of other organic and inorganic minor species will be addressed.


1990 ◽  
Vol 13 (5) ◽  
pp. 333-342 ◽  
Author(s):  
A K Goel ◽  
N D Sharma ◽  
R K Mohindra ◽  
P K Ghosh ◽  
M C Bhatnagar

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 208 ◽  
Author(s):  
Xinchun Chen ◽  
Xuan Yin ◽  
Jie Jin

To satisfy the harsh service demand of stainless steel and aviation bearing steel, the anticorrosion and wettability behaviors of 9Cr18 stainless steel and M50 bearing steel tailored by ion beam surface modification technology were experimentally investigated. By controlling the ion implantation (F+, N+, N+ + Ti+) or deposition processes, different surface-modified layers and ceramic layers or composite layers with both effects (ion implantation and deposition processes) were obtained on metal surfaces. The wettability was characterized by a contact angle instrument, and the thermodynamics stabilization of ion implantation-treated metals in corrosive solution was evaluated through an electrochemical technique. X-ray photoelectron spectroscopy (XPS) was employed for detecting the chemical bonding states of the implanted elements. The results indicated that ion implantation or deposition-induced surface-modified layers or coating layers could increase water contact angles, namely improving hydrophobicity as well as thermodynamic stabilization in corrosive medium. Meanwhile, wettability with lubricant oil was almost not changed. The implanted elements could induce the formation of new phases in the near-surface region of metals, and the wettability behaviors were closely related to the as-formed ceramic components and amorphous sublayer.


Sign in / Sign up

Export Citation Format

Share Document