scholarly journals A Study on the Wettability of Ion-Implanted Stainless and Bearing Steels

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 208 ◽  
Author(s):  
Xinchun Chen ◽  
Xuan Yin ◽  
Jie Jin

To satisfy the harsh service demand of stainless steel and aviation bearing steel, the anticorrosion and wettability behaviors of 9Cr18 stainless steel and M50 bearing steel tailored by ion beam surface modification technology were experimentally investigated. By controlling the ion implantation (F+, N+, N+ + Ti+) or deposition processes, different surface-modified layers and ceramic layers or composite layers with both effects (ion implantation and deposition processes) were obtained on metal surfaces. The wettability was characterized by a contact angle instrument, and the thermodynamics stabilization of ion implantation-treated metals in corrosive solution was evaluated through an electrochemical technique. X-ray photoelectron spectroscopy (XPS) was employed for detecting the chemical bonding states of the implanted elements. The results indicated that ion implantation or deposition-induced surface-modified layers or coating layers could increase water contact angles, namely improving hydrophobicity as well as thermodynamic stabilization in corrosive medium. Meanwhile, wettability with lubricant oil was almost not changed. The implanted elements could induce the formation of new phases in the near-surface region of metals, and the wettability behaviors were closely related to the as-formed ceramic components and amorphous sublayer.

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 427 ◽  
Author(s):  
Jie Jin ◽  
Wei Wang ◽  
Xinchun Chen

In this study, Ti + N ion implantation was used as a surface modification method for surface hardening and friction-reducing properties of Cronidur30 bearing steel. The structural modification and newly-formed ceramic phases induced by the ion implantation processes were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and grazing incidence X-ray diffraction (GIXRD). The mechanical properties of the samples were tested by nanoindentation and friction experiments. The surface nanohardness was also improved significantly, changing from ~10.5 GPa (pristine substrate) to ~14.2 GPa (Ti + N implanted sample). The friction coefficient of Ti + N ion implanted samples was greatly reduced before failure, which is less than one third of pristine samples. Furthermore, the TEM analyses confirmed a trilamellar structure at the near-surface region, in which amorphous/ceramic nanocrystalline phases were embedded into the implanted layers. The combined structural modification and hardening ceramic phases played a crucial role in improving surface properties, and the variations in these two factors determined the differences in the mechanical properties of the samples.


1998 ◽  
Vol 540 ◽  
Author(s):  
A. Meldrum ◽  
L.A. Boatner ◽  
C.W. White ◽  
D.O. Henderson

AbstractRadiation effects in nonmetals have been studied for well over a century by geologists, mineralogists, physicists, and materials scientists. The present work focuses on recent results of investigations of the ion-beam-induced amorphization of the ABO4 compounds – including the orthophosphates (LnPO4; Ln = lanthanides) and the orthosilicates: zircon (ZrSiO4), hafnon (HfSiO4), and thorite (ThSiO4). In the case of the orthosilicates, heavy-ion irradiation at elevated temperatures causes the precipitation of a nanocrystalline metal oxide. Electron irradiation effects in these amorphized insulating ceramics can produce localized recrystallization on a nanometer scale. Similar electron irradiation techniques were used to nucleate monodispersed compound semiconductor nanocrystals formed by ion implantation of the elemental components into fused silica. Methods for the formation of novel structural relationships between embedded nanocrystals and their hosts have been developed and the results presented here demonstrate the general flexibility of ion implantation and irradiation techniques for producing unique near-surface microstructures in ion-implanted host materials.


1987 ◽  
Vol 93 ◽  
Author(s):  
W. S. Samipath ◽  
F. M. Kustas ◽  
R. Wei ◽  
P. J. Wilbur

ABSTRACTIon implantation is shown to retard surface slip and thereby induce improvements in wear and fatigue resistance of metals. A simple test is described which can be used to study the effects of ion implantation in retarding motion of dislocations in the near-surface regions of metals. In this test, regions of annealed and etched surfaces of metals are masked and implanted with ions. The specimens are then deformed until significant plastic deformation is introduced and the slip-lines are observed under the microscope. Evidence of improved resistance to slip-line formation in nitrogen ion implanted surface regions is presented for copper, α-iron and 303 stainless steel. The test is shown to be a useful tool for comparing the effects of ion implantation conditions on surface slip retardation, since adjacent regions of the surface can be implanted to different conditions and the resistance to slip line formation in the different regions can be compared. For example, the resistance to slip line formation in 303 stainless steel was found to be greater in regions that were implanted at ultrahigh current densities (1500 μA/cm2) than in regions implanted at lower current densities (100 μA/cm2) to the same dose and at the same ion energy.


MRS Bulletin ◽  
1987 ◽  
Vol 12 (2) ◽  
pp. 18-21
Author(s):  
C.W. White

Ion beams are used extensively in materials research for processing and synthesis as well as for characterization. In the last few years, enormous advances have been made regarding the use of ion beams for processing or synthesis, and this issue of the MRS BULLETIN will review some of those advances. (The use of ion beams for materials characterization will be the subject of a future issue of the BULLETIN.) The areas covered in this issue are ion implantation, ion beam mixing, ion-assisted deposition, and direct ion beam deposition. For each area, recognized experts in the field prepared overview articles that should be very interesting to those who are not active in the field, and that should be useful to other experts in the field.The first large-scale use of ion beams for materials modification took place in the semiconductor industry more than 20 years ago when ion implantation began to be used to dope the near-surface region of silicon with Group III or Group V dopants. The use of ion implantation in the semiconductor industry has undergone explosive growth, and today almost all electronic devices are fabricated utilizing at lest one ion implantation step.In addition to the semiconductor area, research is being carried out using ion implantation in a multitude of other areas which include ceramics, metals and alloys, insulators, etc. The article on “Ion Implantation” by S.T. Picraux and P.S. Peercy provides an excellent overview of current research activities involving ion implantation of a wide spectrum of materials.


2006 ◽  
Vol 13 (02n03) ◽  
pp. 329-334 ◽  
Author(s):  
Q. WANG ◽  
K. OZAKI ◽  
H. ISHIKAWA ◽  
S. NAKANO ◽  
H. OGISO

Several different species of ions, Au , Fe , Ag , Ti and Si , were implanted into austenite stainless steel sheets at an energy of 3 MeV respectively. The martensite transformation induced with the ion implantation was investigated with transmission electron microscopy equipped with an energy dispersive X-ray spectrometer. The residual stresses induced with ion implantation were evaluated by the curvature technique. The effects of irradiation doses and ion species on the residual stress near surface induced by ion implantation were investigated. It is found that compressive residual stresses were induced by all the ions, and Fe and Au ions, among these ions, produced a higher level of residual stress at the same implantation. It shows that ion implantation can be employed to control and modify the internal stress near surface by changing the irradiation dose and selecting ion specie of the ion implantation.


2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540013 ◽  
Author(s):  
F. Fang ◽  
J. Kennedy ◽  
M. Dhillon ◽  
S. Flint

Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.


1997 ◽  
Vol 504 ◽  
Author(s):  
V. N. Gurarie ◽  
D. N. Jamieson ◽  
R. Szymanski ◽  
A. V. Orlov ◽  
J. S. Williams

ABSTRACTMonocrystals of magnesium oxide and sapphire have been subjected to ion implantation with 86 keV Si− ions to a dose of 5×1016 cm−2 and with 3 MeV H+ ions with a dose of 4.8×1017 cm−2 prior to thermal stress testing in a pulsed plasma. Fracture and deformation characteristics of the surface layer were measured in ion implanted and unimplanted samples using optical and scanning electron microscopy. Ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the thermal stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance is determined for sapphire crystals implanted with 86 keV Si−. In comparison with 86 keV Si− ions the high energy implantation of sapphire and magnesium oxide crystals with 3 MeV H+ ions results in the formation of large-scale defects, which produce a low density crack system and cause a considerable reduction in the resistance to damage. Fracture mechanics principles are applied to evaluate the size of the implantation-induced microcracks which are shown to be comparable with the ion range and the damage range in the crystals tested. Possible mechanisms of crack nucleation for a low and high energy ion implantation are discussed.


1988 ◽  
Vol 100 ◽  
Author(s):  
Robert C. Mccune ◽  
W. T. Donlon ◽  
H. K. Plummer ◽  
L. Toth ◽  
F. W. Kunz

ABSTRACTSurface layers with overall thickness <∼300 nm were produced by ion implantation of N+ or N2+ at energies of 50 or 100 keV in 99.99% pure aluminum. These surfaces were characterized by scanning and transmission electron microscopy, Auger electron spectroscopy, Rutherford backscattering, nuclear reaction analysis and particle-induced X-ray analysis. At doses above 2×1017 N2/cm2 , blistering of the surfaces was observed along with a reduction in the extent of the coulometric dose retained by the material. Oxygen is believed to be introduced into the near-surface region by a process of reaction and ion-beam mixing, as well as possible CO contamination of the beam. A phase, isostructural with AlN, forms semi-coherently with parent aluminum grains, however, some fraction of the metallic aluminum phase remains in the reaction layer, even at overall nitrogen contents which exceed the stoichiometry of AlN.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Arti Yadav ◽  
Noushin Moharrami ◽  
Steve Bull

AbstractModification of the chemomechanical behaviour of the surface of sapphire by ion implantation to improve its near-surface mechanical properties has been investigated. 300 keV Ti+ ions at various doses were implanted and the concentration and damage profiles characterised using Rutherford Backscattering (RBS). At high doses (≥ 3 × 1016 Ti+ cm−2), a surface amorphous layer is formed due to implantation-induced damage. Nanoindentation was used to determine the hardness behaviour of the ion-implanted layer. Hardness increases at low implantation doses, associated with implantation-induced damage, but it is also observed that chemomechanical softening of the surface is reduced due to the removal of adsorbed water. In situ Raman scattering measurements demonstrate this removal at low doses and the re-establishment of the adsorbed water layer at high doses. The adsorption process is changed due to the introduction of carbon into the sapphire surface during implantation. For the optimum-implanted dose, the water readsorption does not recur even several years after the implantation treatment was first carried out. The loss of water adsorption is related to the formation of a non-polar carbonaceous layer on the sapphire surface by cracking of back-streamed diffusion pump oil deposited on the sample surface by inelastic collisions with the ion beam. Based on this study, it is concluded that ion implantation with an appropriate ion species and dose can control the chemomechanical effect and improve the hardness of ceramics, such as sapphire.


MRS Bulletin ◽  
1987 ◽  
Vol 12 (2) ◽  
pp. 31-39 ◽  
Author(s):  
D.A. Lilienfeld ◽  
L.S. Hung ◽  
J.W. Mayer

In the last quarter of a century, modification of the near-surface region of materials has become of major technological importance. The principal surface modification technique utilized in integrated circuit technology is ion implantation, a technique which has more recently been applied in the metal-processing industry as well. The very high doses required for applications such as increasing the hardness of steel or forming buried oxide layers in silicon have pushed ion implantation to its limits. Ion beam mixing, the intermixing of surface layers by the penetration of energetic ions through them, was developed to overcome these limits. Additionally, ion beam mixing has been able to produce new phases, amorphous and crystalline, which have technologically and scientifically interesting properties.Ion beam mixing was studied extensively in silicide forming systems, due partly to applications to electrical contacts for silicon devices. In intermetallic alloy systems, research has concentrated on determining the interplay between the formation of amorphous and crystalline structures and that between equilibrium and metastable phases. Although over 50 alloy systems have been studied, this article will concentrate on the Al-based alloys. These alloys, particularly the near-noble-metal alloys, demonstrate nearly all the features associated with ion-induced phase formation. Further, Al-rich refractory metal alloys form quasicrystalline icosahe-dral alloys. Ion-beam mixing results parallel those of splat-quenching, the technique first used to produce the fivefold symmetric structure.


Sign in / Sign up

Export Citation Format

Share Document