Apoptosis and metastasis: a superior resistance of metastatic cancer cells to programmed cell death

1996 ◽  
Vol 101 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Gennadi V. Glinsky ◽  
Vladislav V. Glinsky
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu-An Chen ◽  
Yong-Da Sie ◽  
Tsung-Yun Liu ◽  
Hsiang-Ling Kuo ◽  
Pei-Yi Chou ◽  
...  

AbstractMetastatic cancer cells are frequently deficient in WWOX protein or express dysfunctional WWOX (designated WWOXd). Here, we determined that functional WWOX-expressing (WWOXf) cells migrate collectively and expel the individually migrating WWOXd cells. For return, WWOXd cells induces apoptosis of WWOXf cells from a remote distance. Survival of WWOXd from the cell-to-cell encounter is due to activation of the survival IκBα/ERK/WWOX signaling. Mechanistically, cell surface epitope WWOX286-299 (repl) in WWOXf repels the invading WWOXd to undergo retrograde migration. However, when epitope WWOX7-21 (gre) is exposed, WWOXf greets WWOXd to migrate forward for merge. WWOX binds membrane type II TGFβ receptor (TβRII), and TβRII IgG-pretreated WWOXf greet WWOXd to migrate forward and merge with each other. In contrast, TβRII IgG-pretreated WWOXd loses recognition by WWOXf, and WWOXf mediates apoptosis of WWOXd. The observatons suggest that normal cells can be activated to attack metastatic cancer cells. WWOXd cells are less efficient in generating Ca2+ influx and undergo non-apoptotic explosion in response to UV irradiation in room temperature. WWOXf cells exhibit bubbling cell death and Ca2+ influx effectively caused by UV or apoptotic stress. Together, membrane WWOX/TβRII complex is needed for cell-to-cell recognition, maintaining the efficacy of Ca2+ influx, and control of cell invasiveness.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Daiki Andoh ◽  
Yukio-Pegio Gunji

The Lévy walk is a pattern that is often seen in the movement of living organisms; it has both ballistic and random features and is a behavior that has been recognized in various animals and unicellular organisms, such as amoebae, in recent years. We proposed an amoeba locomotion model that implements Bayesian and inverse Bayesian inference as a Lévy walk algorithm that balances exploration and exploitation, and through a comparison with general random walks, we confirmed its effectiveness. While Bayesian inference is expressed only by P(h) = P(h|d), we introduce inverse Bayesian inference expressed as P(d|h) = P(d) in a symmetry fashion. That symmetry contributes to balancing contracting and expanding the probability space. Additionally, the conditions of various environments were set, and experimental results were obtained that corresponded to changes in gait patterns with respect to changes in the conditions of actual metastatic cancer cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 965
Author(s):  
Victoria R. Gabriele ◽  
Robabeh M. Mazhabi ◽  
Natalie Alexander ◽  
Purna Mukherjee ◽  
Thomas N. Seyfried ◽  
...  

Melanin nanoparticles are known to be biologically benign to human cells for a wide range of concentrations in a high glucose culture nutrition. Here, we show cytotoxic behavior at high nanoparticle and low glucose concentrations, as well as at low nanoparticle concentration under exposure to (nonionizing) visible radiation. To study these effects in detail, we developed highly monodispersed melanin nanoparticles (both uncoated and glucose-coated). In order to study the effect of significant cellular uptake of these nanoparticles, we employed three cancer cell lines: VM-M3, A375 (derived from melanoma), and HeLa, all known to exhibit strong macrophagic character, i.e., strong nanoparticle uptake through phagocytic ingestion. Our main observations are: (i) metastatic VM-M3 cancer cells massively ingest melanin nanoparticles (mNPs); (ii) the observed ingestion is enhanced by coating mNPs with glucose; (iii) after a certain level of mNP ingestion, the metastatic cancer cells studied here are observed to die—glucose coating appears to slow that process; (iv) cells that accumulate mNPs are much more susceptible to killing by laser illumination than cells that do not accumulate mNPs; and (v) non-metastatic VM-NM1 cancer cells also studied in this work do not ingest the mNPs, and remain unaffected after receiving identical optical energy levels and doses. Results of this study could lead to the development of a therapy for control of metastatic stages of cancer.


2021 ◽  
Vol 22 (4) ◽  
pp. 1886
Author(s):  
Jun Nakayama ◽  
Yuxuan Han ◽  
Yuka Kuroiwa ◽  
Kazushi Azuma ◽  
Yusuke Yamamoto ◽  
...  

Metastasis is a complex event in cancer progression and causes most deaths from cancer. Repeated transplantation of metastatic cancer cells derived from transplanted murine organs can be used to select the population of highly metastatic cancer cells; this method is called as in vivo selection. The in vivo selection method and highly metastatic cancer cell lines have contributed to reveal the molecular mechanisms of cancer metastasis. Here, we present an overview of the methodology for the in vivo selection method. Recent comparative analysis of the transplantation methods for metastasis have revealed the divergence of metastasis gene signatures. Even cancer cells that metastasize to the same organ show various metastatic cascades and gene expression patterns by changing the transplantation method for the in vivo selection. These findings suggest that the selection of metastasis models for the study of metastasis gene signatures has the potential to influence research results. The study of novel gene signatures that are identified from novel highly metastatic cell lines and patient-derived xenografts (PDXs) will be helpful for understanding the novel mechanisms of metastasis.


2006 ◽  
Vol 47 (4) ◽  
pp. 1339 ◽  
Author(s):  
Nilanjana Deb-Joardar ◽  
Gilles Thuret ◽  
Jean-Marc Dumollard ◽  
Lena Absi ◽  
Lydia Campos-Guyotat ◽  
...  

2021 ◽  
pp. molcanres.MCR-20-0981-E.2020
Author(s):  
Alison B. Shupp ◽  
Manish Neupane ◽  
Lebaron C Agostini ◽  
Gang Ning ◽  
Jonathan R. Brody ◽  
...  

2008 ◽  
Vol 6 (9) ◽  
pp. 6
Author(s):  
A. Strasser ◽  
A. Villunger ◽  
P. Bouillet ◽  
E.M. Michalak ◽  
L.A. O'Reilly ◽  
...  

2008 ◽  
Vol 100 (12) ◽  
pp. 1041-1046 ◽  
Author(s):  
Maria Rømer ◽  
Ulrik A. Lademann

SummaryElevated levels of plasminogen activator inhibitor-1 (PAI-1) are associated with poor prognosis in cancer. An explanation to the elevated levels of PAI-1 could be a protective response to the increased proteolytic activity, caused by elevated levels of urokinase-type plasminogen activator (uPA) observed in tumours; however, several lines of evidence suggest that PAI-1 may contribute directly to the pathology of the disease. PAI-1 has been reported to have an effect on most of the basic cellular processes including cell adhesion, cell migration, cell invasion, and cell proliferation and increasing numbers of reports suggest that PAI-1 also can regulate programmed cell death (PCD) in cancer cells and normal cells.A number of reports suggest that PAI-1 can inhibit PCD through its pro-adhesive/anti-proteolytic property whereas other reports suggest that PAI-1 induces PCD through its anti-adhesive property.Furthermore,it has been suggested that PAI-1 can either induce or inhibit PCD though activation of cell signalling pathways.This review will focus on the regulation of programmed cell death by PAI-1 in both normal cells and cancer cells.


Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 421 ◽  
Author(s):  
Kiichiro Teruya ◽  
Yoshihiro Kusumoto ◽  
Hiroshi Eto ◽  
Noboru Nakamichi ◽  
Sanetaka Shirahata

Low molecular weight fucoidan extract (LMF), prepared by an abalone glycosidase digestion of a crude fucoidan extracted from Cladosiphon novae-caledoniae Kylin, exhibits various biological activities, including anticancer effect. Various cancers express programmed cell death-ligand 1 (PD-L1), which is known to play a significant role in evasion of the host immune surveillance system. PD-L1 is also expressed in many types of normal cells for self-protection. Previous research has revealed that selective inhibition of PD-L1 expressed in cancer cells is critical for successful cancer eradication. In the present study, we analyzed whether LMF could regulate PD-L1 expression in HT1080 fibrosarcoma cells. Our results demonstrated that LMF suppressed PD-L1/PD-L2 expression and the growth of HT1080 cancer cells and had no effect on the growth of normal TIG-1 cells. Thus, LMF differentially regulates PD-L1 expression in normal and cancer cells and could serve as an alternative complementary agent for treatment of cancers with high PD-L1 expression.


Sign in / Sign up

Export Citation Format

Share Document