In vitro uptake of 153Gadolinium and Gadolinium complexes by hyaline articular cartilage

1990 ◽  
Vol 11 (2) ◽  
pp. 104-106 ◽  
Author(s):  
A. Engel ◽  
G. Hamilton ◽  
P. Hajek ◽  
D. Fleischmann
1988 ◽  
Vol 27 (04) ◽  
pp. 151-153
Author(s):  
P. Thouvenot ◽  
F. Brunotte ◽  
J. Robert ◽  
L. J. Anghileri

In vitro uptake of 67Ga-citrate and 59Fe-citrate by DS sarcoma cells in the presence of tumor-bearing animal blood plasma showed a dramatic inhibition of both 67Ga and 59Fe uptakes: about ii/io of 67Ga and 1/5o of the 59Fe are taken up by the cells. Subcellular fractionation appears to indicate no specific binding to cell structures, and the difference of binding seems to be related to the transferrin chelation and transmembrane transport differences


1970 ◽  
Vol 64 (4) ◽  
pp. 687-695 ◽  
Author(s):  
Junzo Kato

ABSTRACT The anterior, middle, and posterior hypothalamus, the cortex cerebri, the anterior hypophysis as well as the diaphragm of adult ovariectomized rats were incubated in vitro with tritiated 17β-oestradiol. The uptake of tritiated oestradiol was differentially distributed intracerebrally with higher accumulation in the anterior hypothalamus and the hypophysis. Lowering the temperature of the incubation medium caused a reduction in the uptake of radioactivity by the anterior hypothalamus as compared to that found in other brain tissues. Tritiated oestradiol taken up in vitro by the anterior hypothalamus and the hypophysis tended to be retained after further incubation in a steroid-free medium. The addition of non-radioactive 17β-oestradiol to the medium inhibited the uptake of tritiated oestradiol by these tissues. Moreover, pretreatment with non-radioactive 17β-oestradiol in vivo prevented the preferential accumulation of tritiated oestradiol in vitro in the anterior hypothalamus and the hypophysis. These results indicate that oestradiol is preferentially taken up in vitro by the anterior hypothalamus and the hypophysis of the rat.


1960 ◽  
Vol XXXIV (II) ◽  
pp. 305-311 ◽  
Author(s):  
M. G. Woldring ◽  
A. Bakker ◽  
H. Doorenbos

ABSTRACT The red cell triiodothyronine uptake technique as used in our hospital is described. Incubation time is of almost no importance. The temperature during incubation should be 37° C. Further improvement of the technique is obtained when all blood samples are brought up to 40 % haematocrit prior to incubation. Clinical results are discussed. It is yet too early to give a definite assessment of its clinical value, but it is definitely superior to the measurement of the BMR.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

1992 ◽  
Vol 2 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Nancy L. Monson ◽  
Victor M. Haughton ◽  
Jean M. Modi ◽  
Lowell A. Sether ◽  
Khang-Cheng Ho PhD

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


Author(s):  
Zhong Li ◽  
Yikang Bi ◽  
Qi Wu ◽  
Chao Chen ◽  
Lu Zhou ◽  
...  

AbstractTo evaluate the performance of a composite scaffold of Wharton’s jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young’s modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.


Sign in / Sign up

Export Citation Format

Share Document