A practical enzymatic method to estimate wheat straw quality as raw material for mushroom cultivation

1995 ◽  
Vol 53 (3) ◽  
pp. 277-281 ◽  
Author(s):  
N. Chalaux ◽  
S. Libmond ◽  
J.-M. Savoie
2016 ◽  
Vol 9 (2) ◽  
pp. 167-176
Author(s):  
Eldha Sampepana ◽  
Paluphy Eka Yustini ◽  
Aditya Rinaldi ◽  
Amiroh Amiroh

Surfactant which is used as raw emulsifier in an industry activity such as Sodium Lauryl Sulfonate is a raw material import, it is petroleum derivative which is not renewable and may cause pollution to the environment, because it is not degraded and are carcinogenic. The purpose of the research is to compare the characteristics of the Quaternary methyl ester sulfonat (MES) and Sodium Lauryl Sulfonat (SLS) as emulsifier. First, make the MES by filtering and eliminating fatty acids of palm oil, then process the MES with enzymatic method become methyl ester, then react it in sulfonation and metanolization process, and also neutralized with NaOH. Next, the MES experiment is compared with SLS and existing MES in the market. The results show that surfactants MES experiment has value hidrofil lipofil balance (HLB) interfacial tension and emulsion stability greater than MES in the market and SLS. And the surface tension of MES experiment is larger than MES in the market, but smaller compared to SLS.ABSTRAKSurfaktan yang digunakan sebagai bahan baku emulsifer dalam aktivitas suatu industri pada saat ini seperti Sodium Lauril Sulfonat  merupakan bahan baku import yang merupakan turunan dari minyak bumi, dengan sifat tidak dapat diperbaharui dan dapat menimbulkan pencemaran terhadap lingkungan karena tidak mudah terdegradasi serta bersifat karsinogenik. Metil ester sulfonat dari bahan minyak sawit merupakan surfaktan dengan sifat mudah terdegradasi yang perlu diketahui karakteristiknya. Penelitian bertujuan untuk membandingkan karakteristik surfaktan metil ester sulfonat (MES) dan Sodium Lauril Sulfonat (SLS) sebagai bahan emulsifier. Mula-mula dilakukan pembuatan MES dengan cara menyaring dan menghilangkan asam lemak minyak sawit terlebih dahulu, kemudian diolah menjadi metil ester secara enzimatis, lalu direaksikan secara sulfonasi dan metanolisis, serta dinetralkan dengan NaOH. Selanjutnya MES hasil percobaan dibandingkan dengan SLS dan MES yang ada dipasaran. Hasil penelitian menunjukkan bahwa surfaktan MES memiliki nilai hidrofil lipofil balance (HLB) tegangan antar muka dan stabilitas emulsi lebih besar apabila dibandingkan dengan MES di pasaran dan SLS, kecuali nilai stabilitas emulsi antara MES dan SLS sama. Dan tegangan permukaan MES hasil percobaan, lebih besar dibandingkan dengan MES dipasaran, dan lebih kecil dibandingkan dengan SLS. Kata kunci :   Metil  ester sulfonat, hidrofil lipofil balance, emulsifier, sodium lauril sulfonat , stabilitas emulsi 


Author(s):  
Nataļja Matjuškova ◽  
Laura Okmane ◽  
Dzintra Zaļā ◽  
Linda Rozenfelde ◽  
Māris Puķe ◽  
...  

Abstract The effect of lignocellulose and lignin on growth of mycelium of mushroom Lentinula edodes and laccase activity in cultivation medium was studied. It was shown that cultivation of L. edodes mycelium in liquid nutrient medium with addition of 0.25-0.5% of kraft lignin increased mycelium biomass yield approximately two times compared with reference conditions without addition of lignin. Similar results were obtained in experiments in which 0.5% lignocellulose that remained after obtaining furfural, and 0.5% lignin that remained after obtaining furfural and glucose from wheat straw, were added to the nutrient medium. This effect was greater in the conditions of cultivation with good aeration, compared with static culture. Laccase activity in medium increased after addition of wheat straw lignocellulose or lignin only in the case of mycelium cultivation with aeration. In the case of mushroom cultivation on solid nutrient medium, addition of wheat straw lignocellulose and lignin promoted growth of mycelium only during the first 7 days of cultivation.


2020 ◽  
Vol 10 (21) ◽  
pp. 7638
Author(s):  
Vasile-Florin Ursachi ◽  
Gheorghe Gutt

The aim of this study is to find the optimal pretreatment conditions and hydrolysis in order to obtain a high yield of bioethanol from wheat straw. The pretreatments were performed with different concentrations of sulphuric acid 1, 2 and 3% (v/v), and were followed by an enzymatic hydrolysis that was performed by varying the solid-to-liquid ratio (1/20, 1/25 and 1/30 g/mL) and the enzyme dose (30/30 µL/g, 60/60 µL/g and 90/90 µL/g Viscozyme® L/Celluclast® 1.5 L). This mix of enzymes was used for the first time in the hydrolysis process of wheat straws which was previously pretreated with dilute sulfuric acid. Scanning electron microscopy indicated significant differences in the structural composition of the samples because of the pretreatment with H2SO4 at different concentrations, and ATR-FTIR analysis highlighted the changes in the chemical composition in the pretreated wheat straw as compared to the untreated one. HPLC-RID was used to identify and quantify the carbohydrates content resulted from enzymatic hydrolysis to evaluate the potential of using wheat straws as a raw material for production of cellulosic ethanol in Romania. The highest degradation of lignocellulosic material was obtained in the case of pretreatment with 3% H2SO4 (v/v), a solid-to-liquid ratio of 1/30 and an enzyme dose of 90/90 µL/g. Simultaneous saccharification and fermentation were performed using Saccharomyces cerevisiae yeast, and for monitoring the fermentation process a BlueSens equipment was used provided with ethanol, O2 and CO2 cap sensors mounted on the fermentation flasks. The highest concentration of bioethanol was obtained after 48 h of fermentation and it reached 1.20% (v/v).


2011 ◽  
Vol 183-185 ◽  
pp. 411-416
Author(s):  
Xi Qin Wang ◽  
Zheng Wen Huang ◽  
Bo Yu ◽  
Jian Qiang Zhang

As an industrial organic solid waste, oil residue, with wide sources and low price, but could not find an effective way to use currently. In addition, with the development of mushroom industry and rising price of traditional raw-materials, it is very necessary to find the substitute raw material to reduce production cost of mushroom cultivation. This study attempts to produce the strains of Flammulina velutipes by taking use of oil residue to replace part of the traditional raw material, there are two groups in the experiment: the test group is adding 5%, 10%, 15%, 20%, 40% of the oil residue to replace the culture medium of cottonseed hull and wheat bran; the control group is the traditional culture medium, then comparatively observed the growth of the mycelium. The results showed that it can promote the growth of the mycelium and shorten the cycle of seed production to add the oil residue in the test. But the growth rate of mycelium will be hindered when the concentration exceeds a certain range.The optimal culture medium to add the oil residue is as follows: 15% of the oil residue, 64% cottonseed hull, 20% coarse wood chips, 0% wheat bran , 1% lime. Oil residue contains a lot of the nutritional components to benefit the growth of edible fungi, and without the heavy metal pollution, can replace the culture medium of cottonseed hull and wheat bran and other traditional materials, reduce cost of production the strains, a fair-sized economic efficiency can be received, the environment can be protected.


BioResources ◽  
2013 ◽  
Vol 8 (3) ◽  
Author(s):  
Pavlo Bekhta ◽  
Suleyman Korkut ◽  
Salim Hiziroglu
Keyword(s):  

2021 ◽  
Author(s):  
Youshan Sun ◽  
Xuyang Zhang ◽  
Fei Wang ◽  
Meiyan Wang

Abstract Calcium peroxide (CaO2) pretreatment was employed to remove lignin and subsequently facilitate enzymatic digestibility of wheat straw. An optimal condition was obtained at 130°C for 10 min with 0.35 g CaO2/g dried material of wheat straw and a 1:8 solid-liquid ratio. Under this condition, 57.8% of initial lignin, 7.2% of initial glucan, and 30.6% of initial xylan were removed from CaO2 pretreatment, respectively, meanwhile, a glucose recovery of 90.6 % and a xylose recovery of 65.9 % were obtained from the subsequent enzymatic hydrolysis of treated wheat straw, respectively. CaO2 pretreatment was proved to be a very effective method in delignification and improving enzymatic digestibility. Compared to raw material, the complex structure of lignocellulose was drastically disrupted with a wide emergence of scaly bulges and fully exposed microfibers, which still retained in the solid.


2022 ◽  
Vol 16 (4) ◽  
pp. 59-67
Author(s):  
Dmitriy Prosvirnikov ◽  
Denis Tuncev ◽  
Bulat Ziganshin

The article is devoted to the development of technology and equipment for the production of bioethanol from agricultural plant waste, activated by the steam explosion method. The value and novelty of research lies in obtaining new data on the effective acidic and enzymatic hydrolysis of activated raw materials, and developing a technology for the conversion of plant raw materials into bioethanol. The studies were carried out on the basis of the Department of Wood Materials Processing of Kazan National Research Technological University (Republic of Tatarstan, Kazan). A pilot plant for the production of bioethanol and the principle of its operation are presented. Pine wood waste and wheat straw (collected in Kukmor region of the Republic of Tatarstan in the period August-September 2021) were used as raw materials. Steam-explosive activation of raw materials was carried out at temperatures of 165 ⁰C and 210 ⁰C for 5 minutes. Acid hydrolysis parameters: H2SO4 concentration - 0.5% and 1.5%, hydromodule 1:15, hydrolysis temperature - 187⁰C, hydrolysis duration - 5 hours. Enzymatic hydrolysis parameters: preparation - Cellulox-A (OOO PO Sibbiopharm, Russia) - 6 and 12 g/kg of raw material, hydrolysis temperature - 45 ⁰C, substrate pH 4.7 (acetate buffer), raw material concentration in the substrate 33 g/l, the duration of hydrolysis is 72 h. Alcoholic fermentation of hydrolysates was carried out at 32-34⁰C using Saccharomyces cerevisiae yeast, fermentation duration 7 h, yeast concentration 25 g/l. The bioethanol yield in % of reducing substances was recalculated after determining the mass yield. It is concluded that the vapor-explosive activation of pine wood at a temperature of 210 ºC makes it possible to obtain by acid hydrolysis and anaerobic fermentation of reducing substances up to 0.26 kg (0.33 l) of ethanol from 1 kg of activated raw materials, and activation of wheat straw at the same temperature allows obtaining up to 0.172 kg (0.218 l) ethanol with 1 kg of activated straw


2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Chen Leishan ◽  
Wang Cunjing ◽  
Miao Yu ◽  
Chen Gairong

The reactions were performed to synthesize carbon materials using wheat straw powder as raw material. The wheat straw powder was first hydrolyzed at the absence of a catalyst at 190°C for 1 h, then the hydrolyzate solution was used as carbon source to prepare carbon materials via hydrothermal carbonization at 180°C in the absence of a catalyst for 8 h. The influence of solid-liquid-ratio of wheat straw to water on the morphology of the product was investigated. The samples were examined by a scanning electron microscope and Fourier transform infrared spectroscopy. The results show that the product was carbon microspheres with a large number of O–H, CHO, and other functional groups, and the diameters of carbon microspheres noticeably depended on the solid-liquid ratio. When the solid-liquid ratio was 1 : 60, the diameters of carbon microspheres were in the range of 100 to 300 nm when the solid-liquid ratio was 1 : 40, carbon microspheres with larger and more uniform diameters mostly about 250 nm were obtained, and when the solid-liquid-ratio was 1 : 20, there were more larger carbon microspheres with diameters about 800 nm in the product and the surface of these carbon microspheres is smoother, whereas; the uniformity of the product deteriorates.


2011 ◽  
Vol 236-238 ◽  
pp. 1431-1436
Author(s):  
Jing Liu ◽  
Katsuya Nagata

Alkaline sulfite/anthraquinone (AS/AQ) pulping of wheat straw under different conditions was conducted in this study. A transition point of kappa number at approximately 6.5 was observed based on all experimental results. This transition point can be regarded as the phase transfer point in AS/AQ pulping from bulk to residual delignification. Effective delignification without great lost of pulp yield can be achieved before kappa number was below this transition point during AS/AQ pulping of wheat straw. It is found that the ratio of cooking liquid to solid should not be lower than 6, if good mass transfer of chemicals and lignin dissolving is needed. As the ratio of Na2SO3 to NaOH dosage ranged from 0.4 to 2.4, low proportion of Na2SO3 allows effective delignification while no serious degradation of carbohydrate. Moreover, similar to kraft pulping, addition of AQ in the range of 0.05% to 0.25% is useful to remove lignin and protect the carbohydrate during AS/AQ pulping. Finally, although the transition point of kappa number may be changed while different raw material used for same pulping process or different pulping process for same raw materials, it is of interest and important for mill practice.


Sign in / Sign up

Export Citation Format

Share Document