The Impact of Modern Crop Production Systems in Hungary: The Case of the Nadudvar Method

Author(s):  
P. Eke
Author(s):  
Brett Whelan ◽  
James Taylor

Precision Agriculture (PA) is an approach to managing the variability in production agriculture in a more economic and environmentally efficient manner. It has been pioneered as a management tool in the grains industry, and while its development and uptake continues to grow amongst grain farmers worldwide, a broad range of other cropping industries have embraced the concept. This book explains general PA theory, identifies and describes essential tools and techniques, and includes practical examples from the grains industry. Readers will gain an understanding of the magnitude, spatial scale and seasonality of measurable variability in soil attributes, plant growth and environmental conditions. They will be introduced to the role of sensing systems in measuring crop, soil and environment variability, and discover how this variability may have a significant impact on crop production systems. Precision Agriculture for Grain Production Systems will empower crop and soil science students, agronomy and agricultural engineering students, as well as agronomic advisors and farmers to critically analyse the impact of observed variation in resources on crop production and management decisions.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1060
Author(s):  
Mary E. Hummerick ◽  
Christina L. M. Khodadad ◽  
Anirudha R. Dixit ◽  
Lashelle E. Spencer ◽  
Gretchen J. Maldonado-Vasquez ◽  
...  

The establishment of steady-state continuous crop production during long-term deep space missions is critical for providing consistent nutritional and psychological benefits for the crew, potentially improving their health and performance. Three technology demonstrations were completed achieving simultaneous multi-species plant growth and the concurrent use of two Veggie units on the International Space Station (ISS). Microbiological characterization using molecular and culture-based methods was performed on leaves and roots from two harvests of three leafy greens, red romaine lettuce (Lactuca sativa cv. ‘Outredgeous’); mizuna mustard, (Brassica rapa var japonica); and green leaf lettuce, (Lactuca sativa cv. Waldmann’s) and associated rooting pillow components and Veggie chamber surfaces. Culture based enumeration and pathogen screening indicated the leafy greens were safe for consumption. Surface samples of the Veggie facility and plant pillows revealed low counts of bacteria and fungi and are commonly isolated on ISS. Community analysis was completed with 16S rRNA amplicon sequencing. Comparisons between pillow components, and plant tissue types from VEG-03D, E, and F revealed higher diversity in roots and rooting substrate than the leaves and wick. This work provides valuable information for food production-related research on the ISS and the impact of the plant microbiome on this unique closed environment.


2022 ◽  
Vol 32 (1) ◽  
pp. 21-27
Author(s):  
Osama Mohawesh ◽  
Ammar Albalasmeh ◽  
Sanjit Deb ◽  
Sukhbir Singh ◽  
Catherine Simpson ◽  
...  

Colored shading nets have been increasingly studied in semi-arid crop production systems, primarily because of their ability to reduce solar radiation with the attendant reductions in air, plant, and soil temperatures. However, there is a paucity of research concerning the impact of colored shading nets on various crops grown under semi-arid environments, particularly the sweet pepper (Capsicum annum) production system. This study aimed to investigate the effects of three colored shading net treatments (i.e., white, green, and black shading nets with 50% shading intensity and control with unshaded conditions) on the growth and instantaneous water use efficiency (WUE) of sweet pepper. The results showed that all colored shading nets exhibited significantly lower daytime air temperatures and light intensity (22 to 28 °C and 9992 lx, respectively) compared with the control (32 to 37 °C and 24,973 lx, respectively). There were significant differences in sweet pepper growth performance among treatments, including plant height, shoot dry weight, leaf area, leaf chlorophyll content, and vitamin C in ripened fruit. The enhanced photosynthetic rates were observed in sweet pepper plants under the colored shading nets compared with control plants. WUE increased among the colored shading net treatments in the following order: control ≤ white < black < green. Overall, the application of green and black shading nets to sweet pepper production systems under semi-arid environments significantly enhanced plant growth responses and WUE.


2020 ◽  
Vol 4 (1) ◽  
pp. 164-175
Author(s):  
Shyam Prasad Wagle

 The study assesses the impact of using new technologies on crop production and marketing of selected crops particularly in the case of the Eastern hills. It also evaluates the role of governmental and non-govrnmental organizations to improve agricultural production systems too. Relevant data have been collected from both primary and secondary sources. Primary data draws from the interview, key informant survey and field observation. For this, 30 percent sample households were selected from three altitude belts (upper, middle and lower belts) ranging from 300 to 2,250 masl along the Koshi-highway. It has a wide range of climates, ranging from sub-tropical to alpine with monsoon precipitation in the summer for three and half months and therefore it has diversity in flora and fauna, and people. Similarly, secondary data havebeen gathered from various books, journals and official records. This paper presented that the crucial impact of acceptance of innovative methods in agriculture in the study area is a combined effort of both local people and government. The government together with the development agencies and non-government organizations has contributed to impart knowledge of the agriculture innovative methods in the local farmers and at the same time, the farmers were enthusiastic to learn and adopt those methods. As a result, one can easily see the remarkable changes in crop production due to the impact of new technologies.


Weed Science ◽  
2012 ◽  
Vol 60 (SP1) ◽  
pp. 2-30 ◽  
Author(s):  
William K. Vencill ◽  
Robert L. Nichols ◽  
Theodore M. Webster ◽  
John K. Soteres ◽  
Carol Mallory-Smith ◽  
...  

Development of herbicide-resistant crops has resulted in significant changes to agronomic practices, one of which is the adoption of effective, simple, low-risk, crop-production systems with less dependency on tillage and lower energy requirements. Overall, the changes have had a positive environmental effect by reducing soil erosion, the fuel use for tillage, and the number of herbicides with groundwater advisories as well as a slight reduction in the overall environmental impact quotient of herbicide use. However, herbicides exert a high selection pressure on weed populations, and density and diversity of weed communities change over time in response to herbicides and other control practices imposed on them. Repeated and intensive use of herbicides with the same mechanisms of action (MOA; the mechanism in the plant that the herbicide detrimentally affects so that the plant succumbs to the herbicide; e.g., inhibition of an enzyme that is vital to plant growth or the inability of a plant to metabolize the herbicide before it has done damage) can rapidly select for shifts to tolerant, difficult-to-control weeds and the evolution of herbicide-resistant weeds, especially in the absence of the concurrent use of herbicides with different mechanisms of action or the use of mechanical or cultural practices or both.


2002 ◽  
Vol 92 (12) ◽  
pp. 1367-1372 ◽  
Author(s):  
D. O. Chellemi

Nonchemical methods including host resistance, organic amendments, crop rotation, soil solarization, and cultural practices have been used to control soilborne pests in fresh market vegetable production systems. Their suitability as alternatives to methyl bromide will depend on the approach to pest management used by the grower. Traditionally, methyl bromide is used in production systems that rely on the single application of a broad-spectrum biocide to disinfest soils prior to planting. Non-chemical methods are not suitable for a single tactic approach to pest management because they do not provide the same broad spectrum of activity or consistency as fumigation with methyl bromide. Nonchemical methods are compatible with an integrated pest management (IPM) approach, where multiple tactics are used to maintain damage from pests below an economic threshold while minimizing the impact to beneficial organisms. However, adoption of IPM is hindered by the paucity of economically feasible sampling programs and thresholds for soilborne pests and by a reluctance of growers to commit additional resources to the collection and management of biological information. A novel approach to the management of soilborne pests is to design the crop production system to avoid pest outbreaks. Using this “proactive” approach, a tomato production system was developed using strip-tillage into existing bahia-grass pasture. By minimizing inputs and disruption to the pasture, growers were able to reap the rotational benefits of bahiagrass without cultivating the rotational crop. While minimizing the need for interventive procedures, a proactive approach is difficult to integrate into existing crop production systems and will require several years of testing and validation.


2012 ◽  
Vol 55 (1) ◽  
pp. 13-24 ◽  
Author(s):  
K. Brügemann ◽  
E. Gernand ◽  
U. König von Borstel ◽  
S. König

Abstract. The aim of this study was to assess the impact of heat stress in dairy cows on test-day records for production traits and somatic cell score (SCS) in the state of Lower Saxony, Germany. Three different production systems were defined: A production system characterized by intensive crop production (=indoor housing), a pasture based production system, and a maritime region. Heat stress was assessed by two temperature-humidity indices (THI) modelled as random regression coefficients in an analysis of variance: One (THIBo) was defined as an average of hourly THI, calculated from hourly recorded temperatures and humidities, the other (THIRa) was based on daily maximal temperature and daily minimal humidity. In all production systems, THIBo=60 and THIRa=70 were identified as general thresholds denoting a substantial decline in test-day milk yield. For daily fat and protein percentage, no universally valid thresholds were identified. In contrast for SCS, especially in the maritime region, heat stress as well as cold stress thresholds were found. Regression analysis was used to study the change in test day milk yield in response to THI of those THI ranges with an obvious decline in milk yield. Regression coefficients were −0.08 kg/THIBo and −0.16 kg/THIRa for the crop production system, −0.17 kg/THIBo and −0.23 kg/THIRa for the pasture based system, and −0.26 kg/THIBo and −0.47kg/THIRa for the maritime region. Based on statistical information criteria, identified thresholds for THIBo should be given preference over THIRa when applying genetic studies on heat stress in German Holstein cows.


2015 ◽  
Vol 25 (1) ◽  
pp. 6-7
Author(s):  
Amy Fulcher ◽  
Diana R. Cochran ◽  
Andrew K. Koeser

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Elizabeth A Savory ◽  
Skylar L Fuller ◽  
Alexandra J Weisberg ◽  
William J Thomas ◽  
Michael I Gordon ◽  
...  

Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses.


1996 ◽  
Vol 28 (2) ◽  
pp. 433-443 ◽  
Author(s):  
M. S. Deepak ◽  
Thomas H. Spreen ◽  
John J. VanSickle

AbstractThis study evaluates the economic impact of a ban on methyl bromide on the U.S. winter fresh vegetable market for six major crops: tomatoes, green peppers, cucumbers, squash, eggplant, and watermelons. Florida is the primary domestic supplier of these products. Mexico and Texas are the competing suppliers of the five vegetable crops and peppers, respectively. Leontief technologies represent both monocrop and double-crop production systems; linear inverse demand functions represent four demand regions in the U.S. and Canada. By increasing production costs and reducing yields, a ban on methyl bromide decreases Florida's FOB revenues by 54% and increases those of Mexico by 65%. Price increases to U.S. fresh vegetable consumers range from near zero to over 10%, depending upon the commodity and location.


Sign in / Sign up

Export Citation Format

Share Document