THE ROLE OF ABSCISIC ACID IN THE METABOLISM OF PLANT ROOTS

Author(s):  
P.C. DEKOCK
Keyword(s):  
2021 ◽  
Vol 22 (12) ◽  
pp. 6557
Author(s):  
Li-Ying Ren ◽  
Heng Zhao ◽  
Xiao-Ling Liu ◽  
Tong-Kai Zong ◽  
Min Qiao ◽  
...  

Gastrodia elata is a well-known medicinal and heterotrophic orchid. Its germination, limited by the impermeability of seed coat lignin and inhibition by abscisic acid (ABA), is triggered by symbiosis with fungi such as Mycena spp. However, the molecular mechanisms of lignin degradation by Mycena and ABA biosynthesis and signaling in G. elata remain unclear. In order to gain insights into these two processes, this study analyzed the transcriptomes of these organisms during their dynamic symbiosis. Among the 25 lignin-modifying enzyme genes in Mycena, two ligninolytic class II peroxidases and two laccases were significantly upregulated, most likely enabling Mycena hyphae to break through the lignin seed coats of G. elata. Genes related to reduced virulence and loss of pathogenicity in Mycena accounted for more than half of annotated genes, presumably contributing to symbiosis. After coculture, upregulated genes outnumbered downregulated genes in G. elata seeds, suggesting slightly increased biological activity, while Mycena hyphae had fewer upregulated than downregulated genes, indicating decreased biological activity. ABA biosynthesis in G. elata was reduced by the downregulated expression of 9-cis-epoxycarotenoid dioxygenase (NCED-2), and ABA signaling was blocked by the downregulated expression of a receptor protein (PYL12-like). This is the first report to describe the role of NCED-2 and PYL12-like in breaking G. elata seed dormancy by reducing the synthesis and blocking the signaling of the germination inhibitor ABA. This study provides a theoretical basis for screening germination fungi to identify effective symbionts and for reducing ABA inhibition of G. elata seed germination.


1975 ◽  
Vol 53 (24) ◽  
pp. 3041-3050 ◽  
Author(s):  
C. H. A. Little

In experiments with attached and detached shoots of balsam fir, Abies balsamea L., synthetic (±)abscisic acid (ABA) (1) reduced photosynthesis and transpiration by inducing stomatal closure, (2) inhibited indoleacetic acid (IAA) - induced cambial activity in photosynthesizing and non-photosynthesizing shoots, and (3) inhibited the basipetal movement of [14C]IAA. Neither gibberellic acid nor kinetin counteracted the inhibitory effect of (±)ABA on IAA-induced cambial activity. In addition it was demonstrated that increasing the internal water stress increased the level of endogenous ABA in the phloem–cambial region of bark peelings and decreased the basipetal movement of [14C]IAA through branch sections. On the basis of these findings it is proposed that internal water stress inhibits cambial activity, partly through increasing the level of ABA; the ABA acts to decrease the provision of carbohydrates and auxin that are required for cambial growth.


2007 ◽  
Vol 145 (3) ◽  
pp. 853-862 ◽  
Author(s):  
Marina Efetova ◽  
Jürgen Zeier ◽  
Markus Riederer ◽  
Chil-Woo Lee ◽  
Nadja Stingl ◽  
...  

1974 ◽  
Vol 82 (1) ◽  
pp. 113-116 ◽  
Author(s):  
M. Abdel-Rahman ◽  
F. M. R. Isenberg

SUMMARYExperiments were conducted to study the effect of plant injection with growth regulators on the dormancy of onion bulbs cv. Elba Globe. Application of abscisic acid induced early senescence of the leaves and prolonged the rest period of the bulbs. This effect was partially overcome by subsequent applications of gibberellin, auxin or cytokinin and totally overcome with the application of a mixture of the three hormones. Maleic hydrazide application prolonged the rest period by inhibiting both sprouting and rooting of the bulbs throughout the storage period. This inhibitory effect was not overcome by the subsequent application of auxin, gibberellin, kinetin, or their combinations. Ethephon application increased rooting of bulbs and partially overcame the effect of abscisic acid on dormancy.


2019 ◽  
Author(s):  
Irene A Vos ◽  
Adriaan Verhage ◽  
Lewis G Watt ◽  
Ido Vlaardingerbroek ◽  
Robert C Schuurink ◽  
...  

AbstractJasmonic acid (JA) is an important plant hormone in the regulation of defenses against chewing herbivores and necrotrophic pathogens. In Arabidopsis thaliana, the JA response pathway consists of two antagonistic branches that are regulated by MYC- and ERF-type transcription factors, respectively. The role of abscisic acid (ABA) and ethylene (ET) in the molecular regulation of the MYC/ERF antagonism during plant-insect interactions is still unclear. Here, we show that production of ABA induced in response to leaf-chewing Pieris rapae caterpillars is required for both the activation of the MYC-branch and the suppression of the ERF-branch during herbivory. Exogenous application of ABA suppressed ectopic ERF-mediated PDF1.2 expression in 35S::ORA59 plants. Moreover, the GCC-box promoter motif, which is required for JA/ET-induced activation of the ERF-branch genes ORA59 and PDF1.2, was targeted by ABA. Application of gaseous ET counteracted activation of the MYC-branch and repression of the ERF-branch by P. rapae, but infection with the ET-inducing necrotrophic pathogen Botrytis cinerea did not. Accordingly, P. rapae performed equally well on B. cinerea-infected and control plants, whereas activation of the MYC-branch resulted in reduced caterpillar performance. Together, these data indicate that upon feeding by P. rapae, ABA is essential for activating the MYC-branch and suppressing the ERF-branch of the JA pathway, which maximizes defense against caterpillars.


Sign in / Sign up

Export Citation Format

Share Document