EQUILIBRIUM BETWEEN TEN STRICTLY ANAEROBIC BACTERIAL STRAINS IN THE DIGESTIVE TRACT OF “GNOTOXENIC” MICE AND RATS. ROLE OF THE DIET

1973 ◽  
pp. 413-420
Author(s):  
P. Raibaud ◽  
R. Ducluzeau
2008 ◽  
Vol 74 (11) ◽  
pp. 3434-3443 ◽  
Author(s):  
Ahmed Sallam ◽  
Alexander Steinbüchel

ABSTRACT Four bacterial strains were isolated from a cyanophycin granule polypeptide (CGP)-degrading anaerobic consortium, identified by 16S rRNA gene sequencing, and assigned to species of the genera Pseudomonas, Enterococcus, Clostridium, and Paenibacillus. The consortium member responsible for CGP degradation was assigned as Pseudomonas alcaligenes strain DIP1. The growth of and CGP degradation by strain DIP1 under anaerobic conditions were enhanced but not dependent on the presence of nitrate as an electron acceptor. CGP was hydrolyzed to its constituting β-Asp-Arg dipeptides, which were then completely utilized within 25 and 4 days under anaerobic and aerobic conditions, respectively. The end products of CGP degradation by strain DIP1 were alanine, succinate, and ornithine as determined by high-performance liquid chromatography analysis. The facultative anaerobic Enterococcus casseliflavus strain ELS3 and the strictly anaerobic Clostridium sulfidogenes strain SGB2 were coisolates and utilized the β-linked isodipeptides from the common pool available to the mixed consortium, while the fourth isolate, Paenibacillus odorifer strain PNF4, did not play a direct role in the biodegradation of CGP. Several syntrophic interactions affecting CGP degradation, such as substrate utilization, the reduction of electron acceptors, and aeration, were elucidated. This study demonstrates the first investigation of CGP degradation under both anaerobic and aerobic conditions by one bacterial strain, with regard to the physiological role of other bacteria in a mixed consortium.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S42-S42
Author(s):  
Kohei Sugihara ◽  
Nobuhiko Kamada

Abstract Background Recent accumulating evidence suggests that amino acids have crucial roles in the maintenance of intestinal homeostasis. In inflammatory bowel disease (IBD), amino acid metabolism is changed in both host and the gut microbiota. Among amino acids, L-serine plays a central role in several metabolic processes that are essential for the growth and survival of both mammalian and bacterial cells. However, the role of L-serine in intestinal homeostasis and IBD remains incompletely understood. In this study, we investigated the effect of dietary L-serine on intestinal inflammation in a murine model of colitis. Methods Specific pathogen-free (SPF) mice were fed either a control diet (amino acid-based diet) or an L-serine-deficient diet (SDD). Colitis was induced by the treatment of dextran sodium sulfate (DSS). The gut microbiome was analyzed by 16S rRNA sequencing. We also evaluate the effect of dietary L-serine in germ-free mice and gnotobiotic mice that were colonized by a consortium of non-mucolytic bacterial strains or the consortium plus mucolytic bacterial strains. Results We found that the SDD exacerbated experimental colitis in SPF mice. However, the severity of colitis in SDD-fed mice was comparable to control diet-fed mice in germ-free condition, suggesting that the gut microbiota is required for exacerbation of colitis caused by the restriction of dietary L-serine. The gut microbiome analysis revealed that dietary L-serine restriction fosters the blooms of a mucus-degrading bacterium Akkermansia muciniphila and adherent-invasive Escherichia coli in the inflamed gut. Consistent with the expansion of mucolytic bacteria, SDD-fed mice showed a loss of the intestinal mucus layer. Dysfunction of the mucus barrier resulted in increased intestinal permeability, thereby leading to bacterial translocation to the intestinal mucosa, which subsequently increased the severity of colitis. The increased intestinal permeability and subsequent bacterial translocation were observed in SDD-fed gnotobiotic mice that colonized by mucolytic bacteria. In contrast, dietary L-serine restriction did not alter intestinal barrier integrity in gnotobiotic mice that colonized only by non-mucolytic bacteria. Conclusion Our results suggest that dietary L-serine regulates the integrity of the intestinal mucus barrier during inflammation by limiting the expansion of mucus degrading bacteria.


2018 ◽  
Vol 19 (12) ◽  
pp. 3810 ◽  
Author(s):  
Ting Lian ◽  
Qi Wu ◽  
Brian Hodge ◽  
Kenneth Wilson ◽  
Guixiang Yu ◽  
...  

Aging is often defined as the accumulation of damage at the molecular and cellular levels which, over time, results in marked physiological impairments throughout the organism. Dietary restriction (DR) has been recognized as one of the strongest lifespan extending therapies observed in a wide array of organisms. Recent studies aimed at elucidating how DR promotes healthy aging have demonstrated a vital role of the digestive tract in mediating the beneficial effects of DR. Here, we review how dietary restriction influences gut metabolic homeostasis and immune function. Our discussion is focused on studies of the Drosophila digestive tract, where we describe in detail the potential mechanisms in which DR enhances maintenance of the intestinal epithelial barrier, up-regulates lipid metabolic processes, and improves the ability of the gut to deal with damage or stress. We also examine evidence of a tissue-tissue crosstalk between gut and neighboring organs including brain and fat body. Taken together, we argue that the Drosophila gut plays a critical role in DR-mediated lifespan extension.


Author(s):  
A. I. Khavkin ◽  
N. M. Bogdanova ◽  
V. P. Novikova

.Both changes in diet and pathological conditions caused by an infectious agent, allergic or autoimmune inflammatory process, affect the biological rhythms of the digestive tract, which negatively affects the intestinal microbiota and increases the permeability of the intestinal mucosa. The altered microbiota potentiates inflammation and causes a “vicious circle”. The zonulin protein is the agent that modulates the density of intercellular connections. The review presents data on the biological role of zonulin, correction of its synthesis violation with the help of functional products for baby food.


2020 ◽  
Author(s):  
Shraddha P. Pawar ◽  
Ambalal B. Chaudhari

Abstract Pyrrolnitrin (PRN) from rhizobacteria displays a key role in biocontrol of phytopathogenic fungi in rhizospheric soil. Therefore, different rhizospheric soils were investigated for the prevalence of PRN producer in minimal salt (MS) medium containing tryptophan (0.2 M NaCl; pH 8) using three successive enrichments. Of 12% isolates, only five bacterial strains had shown PRN secretion, screened with Thin Layer Chromatography (Rf 0.8) and antifungal activity (27 mm) against phytopathogen. The phenetic and 16S rRNA sequence revealed the close affiliation of isolates (KMB, M-2, M-11, TW3, and TO2) to Stenotrophomonas rhizophila (KY800458), Enterobacter spp. (KY800455), Brevibacillus parabrevis (KY800454), Serratia marcescens (KY800456) and Serratia nemtodiphila (KY800457). Purified compound from isolates was characterised using UV, IR, HPLC, LCMS and GCMS as PRN. However, BLASTn hit of prn gene sequences from both Serratia species showed 99% similarity with NADPH dependent FMN reductase component (prnF). The homology protein model of prnF was developed from translated sequence of S. marcescens TW3 with chromate reductase of Escherichia coli K-12. Docking with FMN and NADPH was performed. The study demonstrated the possible role of prnF NADPH dependent FMN reductases in prnD for supply of reduced flavin in rhizobacterial strain of Serratia spp. which may pave a way to understand PRN production.


2018 ◽  
Vol 104 (2) ◽  
pp. F199-F201 ◽  
Author(s):  
Nigel J Hall ◽  
Melanie Drewett ◽  
David Burge

AimsTo investigate the role played by amniotic fluid in late fetal nutrition by analysis of infants born with digestive tract atresia.MethodsBirth weight (BW), gestational age and gender of infants born with oesophageal (OA), duodenal (DA), jejunal (JA) and ileal atresia (IA) were recorded and BW Z-scores compared. Infants with incomplete obstruction (stenosis), chromosomal or syndromic conditions and multiple congenital malformations were excluded. Term infants admitted with suspected postnatal intestinal obstruction in whom no congenital malformation was found were used as a control group.ResultsA total of 584 infants were identified comprising 148 OA, 60 DA, 26 JA and 57 IA with 293 in the control group. Infants with OA and DA had statistically significantly lower BW Z-score than controls. However, BW Z-score for infants with more distal atresia (JA and IA) was similar to controls. When compared with infants with OA, BW Z-score for infants with more distal atresia was higher than that for OA. BW Z-score in infants with OA was significantly lower in those born at term compared with those born preterm (mean±SD −0.92±1.0 vs −0.48±0.87; p=0.01) with a significant negative correlation between BW Z-score and increasing gestational age (R2=0.12; p<0.0001). This effect of gestational age was not seen in other atresias.ConclusionThese observations support the concept that reduced enteral absorption of amniotic fluid due to high digestive tract obstruction in utero reduces fetal growth. The effect is greater when the obstruction is more proximal and with advancing gestation.


2018 ◽  
Vol 243 (4) ◽  
pp. 327-333 ◽  
Author(s):  
Luo-Jia Wang ◽  
Wei-Lin Wang ◽  
Hong Gao ◽  
Yu-Zuo Bai ◽  
Shu-Cheng Zhang

Congenital anorectal malformation is the most common digestive tract malformation in newborns. It has been reported that FOXD3/FOXD4, a forkhead transcription factor, regulates the generation, migration, and differentiation of neural crest cells. However, whether FOXD3/FOXD4 takes part in anorectal malformation remains unclear. In the present study, we used ethylene thiourea to induce the animal models of anorectal malformation in rat embryos and to interrogate the role of FOXD3/FOXD4 in anorectal malformation pathogenesis. Hindgut samples of the animal models were collected at E15, E17, E19, and E21 days of age. The expression of FOXD3/FOXD4 was detected by immunohistochemistry, western blot, and quantitative real-time fluorescence PCR. By immunohistochemical staining, FOXD3/FOXD4 was observed in epithelial cells of the rectum and the anus both in normal and rat embryos with anorectal malformation. Expression level analysis by western blot indicated that FOXD3/FOXD4 expression increased in ethylene thiourea-induced anorectal malformation groups. mRNA expression as determined by quantitative real-time fluorescence PCR analysis was consistent with the western blot results. Tentative conclusions were drawn that FOXD3/FOXD4 is expressed in the hindgut in rat embryos and is upregulated in anorectal malformation. FOXD3/FOXD4 is required for the development of the hindgut, and its aberrant expression may be an important factor leading to the incidence of anorectal malformation. Impact statement Congenital anorectal malformation (ARM) is the most common digestive tract malformation in newborns. The pathophysiological ground remains unclear. In this study, we used animal models of ARM for the first time to interrogate the role of FOXD3/FOXD4 in ARM pathogenesis. The animal models of ARM were successfully induced by ethylene thiourea (ETU) in rat embryos providing a strong basis for pathogenesis study of this disease. Expression analysis of FOXD3/FOXD4 was carried out in these models, and the results shape a deeper understanding of FOXD3/FOXD4 being required for the normal development of the hindgut. The aberrant expression of FOXD3/FOXD4 may be an important factor leading to ARM incidence.


Sign in / Sign up

Export Citation Format

Share Document