Molecular Genetic Modification of Legumes

Author(s):  
F.B. Holl
1999 ◽  
Vol 19 (2_suppl) ◽  
pp. 202-207 ◽  
Author(s):  
Catherine M. Hoff ◽  
Ty R. Shockley

Gene therapy is a promising new treatment modality based on molecular genetic modification to achieve a therapeutic benefit. We believe that gene therapy in the peritoneal cavity holds considerable promise, and we describe strategies by which genetic modification can be used to treat a variety of disease states or conditions. First, we can envision a strategy, based on genetic modification of the peritoneal membrane, to improve the practice of peritoneal dialysis through the production of proteins that would be of therapeutic value in preventing membrane damage and in preserving or enhancing its function as a dialyzing membrane. Second, the membrane could be genetically modified for either local or systemic delivery of therapeutic proteins. This approach could be applied to a variety of pathologies or conditions that require either sustained or transient delivery of therapeutic proteins, such as enzymes or growth factors. Third, gene transfer has already been incorporated into several strategies for the treatment of intra-abdominal carcinomas, and it has been effective in animal models of ovarian and bladder cancer and of peritoneal mesothelioma. Finally, gene transfer can be a valuable tool in increasing our understanding of the biology of the peritoneal membrane. By being able to manipulate the expression of specific genes through gene transfer, their role in various (patho)physiological processes can be identified. In summary, gene therapy in the peritoneal cavity has significant potential to address a variety of diseases or pathophysiological conditions, and to further our knowledge of peritoneal cavity biology.


2021 ◽  
Vol 22 (4) ◽  
pp. 1943
Author(s):  
Jennifer Badura ◽  
Niël van Wyk ◽  
Silvia Brezina ◽  
Isak S. Pretorius ◽  
Doris Rauhut ◽  
...  

Apiculate yeasts belonging to the genus Hanseniaspora are commonly isolated from viticultural settings and often dominate the initial stages of grape must fermentations. Although considered spoilage yeasts, they are now increasingly becoming the focus of research, with several whole-genome sequencing studies published in recent years. However, tools for their molecular genetic manipulation are still lacking. Here, we report the development of a tool for the genetic modification of Hanseniaspora uvarum. This was employed for the disruption of the HuATF1 gene, which encodes a putative alcohol acetyltransferase involved in acetate ester formation. We generated a synthetic marker gene consisting of the HuTEF1 promoter controlling a hygromycin resistance open reading frame (ORF). This new marker gene was used in disruption cassettes containing long-flanking (1000 bp) homology regions to the target locus. By increasing the antibiotic concentration, transformants were obtained in which both alleles of the putative HuATF1 gene were deleted in a diploid H. uvarum strain. Phenotypic characterisation including fermentation in Müller-Thurgau must showed that the null mutant produced significantly less acetate ester, particularly ethyl acetate. This study marks the first steps in the development of gene modification tools and paves the road for functional gene analyses of this yeast.


2005 ◽  
Vol 11 (3) ◽  
Author(s):  
Henry I Miller ◽  
Gregory Conko

Discussions of the risks and benefits of recombinant DNA technology, or 'genetic modification' (GM), should occur within the context of experience with older, 'conventional' techniques for genetic improvement. But critics' alarmist reports and commentaries invariably emphasise the things that might go wrong only with recombinant DNA-modified organisms, while studiously avoiding the essential broader context. They ignore vast amounts of data, including literally millennia of experience with less precise methods used for genetic modification, and they continue to deny the well-established scientific consensus that no unique risks attend the use of recombinant DNA techniques. They promulgate the perception that recombinant DNA technology is unproven, untested and unregulated – and promote an approach to regulation in which there is an inverse relationship between degree of scrutiny and risk. The disproportionate regulation of the products of recombinant DNA technology needlessly raises the cost of research and development, while it fails to advance consumer or environmental safety. The question we must ask is not whether regulation generally is or is not justified, but rather what should be regulated and how? The use of certain techniques – in particular, those that are the most precise and predictable – as a trigger for regulation cannot be justified scientifically. Regulatory efforts should be redirected to focus oversight on new organisms that express characteristics likely to pose significant risk, regardless of the methods used in their development, while leaving relatively low-risk traits of both classical and molecular genetic modification unburdened by costly regulation.


2015 ◽  
Vol 54 (03) ◽  
pp. 94-100 ◽  
Author(s):  
P. B. Musholt ◽  
T. J. Musholt

SummaryAim: Thyroid nodules > 1 cm are observed in about 12% of unselected adult employees aged 18–65 years screened by ultrasound scan (40). While intensive ultrasound screening leads to early detection of thyroid diseases, the determination of benign or malignant behaviour remains uncertain and may trigger anxieties in many patients and their physicians. A considerable number of thyroid resections are consecutively performed due to suspicion of malignancy in the detected nodes. Fine needle aspiration biopsy (FNAB) has been recommended for the assessment of thyroid nodules to facilitate detection of thyroid carcinomas but also to rule out malignancy and thereby avoid unnecessary thyroid resections. However, cytology results are dependent on experience of the respective cytologist and unfortunately inconclusive in many cases. Methods: Molecular genetic markers are already used nowadays to enhance sensitivity and specificity of FNAB cytology in some centers in Germany. The most clinically relevant molecular genetic markers as pre-operative diagnostic tools and the clinical implications for the intraoperative and postoperative management were reviewed. Results: Molecular genetic markers predominantly focus on the preoperative detection of thyroid malignancies rather than the exclusion of thyroid carcinomas. While some centers routinely assess FNABs, other centers concentrate on FNABs with cytology results of follicular neoplasia or suspicion of thyroid carcinoma. Predominantly mutations of BRAF, RET/PTC, RAS, and PAX8/PPARγ or expression of miRNAs are analyzed. However, only the detection of BRAF mutations predicts the presence of (papillary) thyroid malignancy with almost 98% probability, indicating necessity of oncologic thyroid resections irrespective of the cytology result. Other genetic alterations are associated with thyroid malignancy with varying frequency and achieve less impact on the clinical management. Conclusion: Molecular genetic analysis of FNABs is increasingly performed in Germany. Standardization, quality controls, and validation of various methods need to be implemented in the near future to be able to compare the results. With increasing knowledge about the impact of genetic alterations on the prognosis of thyroid carcinomas, recommendations have to be defined that may lead to individually optimized treatment strategies.


2010 ◽  
Vol 30 (S 01) ◽  
pp. S153-S155
Author(s):  
D. Delev ◽  
S. Pahl ◽  
J. Driesen ◽  
H. Brondke ◽  
J. Oldenburg ◽  
...  

1995 ◽  
Vol 73 (05) ◽  
pp. 756-762 ◽  
Author(s):  
Yoshiaki Tomiyama ◽  
Hirokazu Kashiwagi ◽  
Satoru Kosugi ◽  
Masamichi Shiraga ◽  
Yoshio Kanayama ◽  
...  

SummaryWe analyzed the molecular genetic defect responsible for type I Glanzmann’s thrombasthenia in a Japanese patient. In an immunoblot assay using polyclonal anti-GPIIb-IIIa antibodies, some GPIIIa (15% of normal amount) could be detected in the patient’s platelets, whereas GPIIb could not (<2% of normal amount). Nucleotide sequence analysis of platelet GPIIb mRNA-derived polymerase chain reaction (PCR) products revealed that patient’s GPIIb cDNA had a 75-bp deletion in the 3’ boundary of exon 17 resulting in an in-frame deletion of 25 amino acids. DNA analysis and family study revealed that the patient was a compound heterozygote of two GPIIb gene defects. One allele derived from her father was not expressed in platelets, and the other allele derived from her mother had a 9644C → T mutation which was located at the position -3 of the splice donor junction of exon 17 and resulted in a termination codon (TGA). Moreover, quantitative analysis demonstrated that the amount of the abnormal GPIIb transcript in the patient’s platelets was markedly reduced. Thus, the C → T mutation resulting in the abnormal splicing of GPIIb transcript and the reduction in its amount is responsible for Glanzmann’s thrombasthenia.


Sign in / Sign up

Export Citation Format

Share Document