Molecular tools to investigate Sharka disease in Prunus species

Author(s):  
Gloria De Mori ◽  
Federica Savazzini ◽  
Filippo Geuna
2019 ◽  
Vol 14 (5) ◽  
pp. 405-420 ◽  
Author(s):  
Eduardo Alvarado-Ortiz ◽  
Miguel Á. Sarabia-Sánchez ◽  
Alejandro García-Carrancá

Cancer Stem Cells (CSC) generally constitute a minor cellular population within tumors that exhibits some capacities of normal Stem Cells (SC). The existence of CSC, able to self-renew and differentiate, influences central aspects of tumor biology, in part because they can continue tumor growth, give rise to metastasis, and acquire drug and radioresistance, which open new avenues for therapeutics. It is well known that SC constantly interacts with their niche, which includes mesenchymal cells, extracellular ligands, and the Extra Cellular Matrix (ECM). These interactions regularly lead to homeostasis and maintenance of SC characteristics. However, the exact participation of each of these components for CSC maintenance is not clear, as they appear to be context- or cell-specific. In the recent past, surface cellular markers have been fundamental molecular tools for identifying CSC and distinguishing them from other tumor cells. Importantly, some of these cellular markers have been shown to possess functional roles that affect central aspects of CSC. Likewise, some of these markers can participate in regulating the interaction of CSC with their niche, particularly the ECM. We focused this review on the molecular mechanisms of surface cellular markers commonly employed to identify CSC, highlighting the signaling pathways and mechanisms involved in CSC-ECM interactions, through each of the cellular markers commonly used in the study of CSC, such as CD44, CD133, CD49f, CD24, CXCR4, and LGR5. Their presence does not necessarily implicate them in CSC biology.


2015 ◽  
Vol 2015 (10) ◽  
pp. 2825-2826 ◽  
Author(s):  
Vikram Kapoor ◽  
Xuan Li ◽  
Christopher A Impellitteri ◽  
Kartik Chandran ◽  
Jorge W Santo Domingo

2018 ◽  
Vol 36 (1) ◽  
pp. 050-056 ◽  
Author(s):  
Aladdin Hamawieh ◽  
◽  
Fida Alo ◽  
Seid Ahmed ◽  
◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 560
Author(s):  
José A. Hernández ◽  
Pedro Díaz-Vivancos ◽  
José Ramón Acosta-Motos ◽  
Nuria Alburquerque ◽  
Domingo Martínez ◽  
...  

(1) Background: Prunus species have the ability to suspend (induce dormancy) and restart growth, in an intricate process in which environmental and physiological factors interact. (2) Methods: In this work, we studied the evolution of sugars, antioxidant metabolism, and abscisic acid (ABA) and gibberellins (GAs) levels during bud dormancy evolution in a high-chill peach variety, grown for two seasons in two different geographical areas with different annual media temperature, a cold (CA) and a temperate area (TA). (3) Results: In both areas, starch content reached a peak at ecodormancy, and then decreased at dormancy release (DR). Sorbitol and sucrose declined at DR, mainly in the CA. In contrast, glucose and fructose levels progressively rose until DR. A decline in ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase and catalase activities occurred in both seasons at DR. Moreover, the H2O2-sensitive SOD isoenzymes, Fe-SOD and Cu,Zn-SOD, and two novel peroxidase isoenzymes, were detected. Overall, these results suggest the occurrence of a controlled oxidative stress during DR. GA7 was the major bioactive GA in both areas, the evolution of its levels being different between seasons and areas. In contrast, ABA content decreased during the dormancy period in both areas, resulting in a reduction in the ABA/total GAs ratio, being more evident in the CA. (4) Conclusion: A possible interaction sugars-hormones-ROS could take place in high-chill peach buds, favoring the DR process, suggesting that, in addition to sugar metabolism, redox interactions can govern bud DR, regardless of chilling requirements.


2021 ◽  
Vol 22 (3) ◽  
pp. 1176
Author(s):  
Francesca Precazzini ◽  
Simone Detassis ◽  
Andrea Selenito Imperatori ◽  
Michela Alessandra Denti ◽  
Paola Campomenosi

Studies investigating microRNAs as potential biomarkers for cancer, immune-related diseases, or cardiac pathogenic diseases, among others, have exponentially increased in the last years. In particular, altered expression of specific miRNAs correlates with the occurrence of several diseases, making these molecules potential molecular tools for non-invasive diagnosis, prognosis, and response to therapy. Nonetheless, microRNAs are not in clinical use yet, due to inconsistencies in the literature regarding the specific miRNAs identified as biomarkers for a specific disease, which in turn can be attributed to several reasons, including lack of assay standardization and reproducibility. Technological limitations in circulating microRNAs measurement have been, to date, the biggest challenge for using these molecules in clinical settings. In this review we will discuss pre-analytical, analytical, and post-analytical challenges to address the potential technical biases and patient-related parameters that can have an influence and should be improved to translate miRNA biomarkers to the clinical stage. Moreover, we will describe the currently available methods for circulating miRNA expression profiling and measurement, underlining their advantages and potential pitfalls.


2021 ◽  
Vol 7 (3) ◽  
pp. 171
Author(s):  
Reannon L. Smith ◽  
Tom W. May ◽  
Jatinder Kaur ◽  
Tim I. Sawbridge ◽  
Ross C. Mann ◽  
...  

The Podosphaera tridactyla species complex is highly variable morphologically and causes powdery mildew on a wide range of Prunus species, including stone fruit. A taxonomic revision of the Po. tridactyla species complex in 2020 identified 12 species, seven of which were newly characterised. In order to clarify which species of this complex are present in Australia, next generation sequencing was used to isolate the fungal ITS+28S and host matK chloroplast gene regions from 56 powdery mildew specimens of stone fruit and ornamental Prunus species accessioned as Po. tridactyla or Oidium sp. in Australian reference collections. The specimens were collected in Australia, Switzerland, Italy and Korea and were collected from 1953 to 2018. Host species were confirmed using matK phylogenetic analysis, which identified that four had been misidentified as Prunus but were actually Malusprunifolia. Podosphaera species were identified using ITS+28S phylogenetic analysis, recognising three Podosphaera species on stone fruit and related ornamental Prunus hosts in Australia. These were Po.pannosa, the rose powdery mildew, and two species in the Po. tridactyla species complex: Po. ampla, which was the predominant species, and a previously unidentified species from peach, which we describe here as Po. cunningtonii.


Sign in / Sign up

Export Citation Format

Share Document