Development of alkali-activated binders from sodium silicate powder produced from industrial wastes

Author(s):  
Parthiban Kathirvel
2021 ◽  
Vol 13 (13) ◽  
pp. 7501
Author(s):  
P. Delgado-Plana ◽  
A. Rodríguez-Expósito ◽  
S. Bueno-Rodríguez ◽  
L. Pérez-Villarejo ◽  
D. M. Tobaldi ◽  
...  

The valorization of spent oil bleaching earths (SOBE) is crucial for the protection of the environment and the reuse of resources. In this research, alkali-activated binders were manufactured at room temperature using SOBE as a precursor by varying the mass ratio between the activating solutions of sodium silicate (Na2SiO3) and 6 M sodium hydroxide (NaOH) (activating solution modulus) (Na2SiO3/NaOH ratio = 1/1; 1/2; 1/3; 1/4) to investigate the influence on the technological properties of the materials. This process intends to evaluate the potential of SOBE, heat-treated at 550 °C (1 h), as a precursor of the reaction (source of aluminosilicates). Samples produced with higher amounts of sodium silicate developed a denser structure, with lower porosity and a higher amount of geopolymer gel. Maximum flexural (8.35 MPa) and compressive (28.4 MPa) strengths of samples cured at room temperature for 28 days were obtained with a Na2SiO3/NaOH mass ratio of 1/1. The study demonstrates that SOBE waste can be used as a precursor in the manufacture of geopolymer binders that show a good compromise between physical, mechanical and thermally insulating characteristics.


2019 ◽  
Vol 274 ◽  
pp. 01003 ◽  
Author(s):  
Naim Sedira ◽  
João Castro-Gomes

The mechanical properties of alkali-activated binders based on blends of tungsten mining waste mud (TMWM) and electric arc furnace slag (EAF-S) were investigated. The synthesis of alkali-activated binders was conducted at 60°C for 24 h with different TMWM/EAF-Slag ratios (90:10, 80:20, 70:30, 60:40, and 50:50 vt.%). Using sodium hydroxide (SH) and sodium silicate (SS) solutions as alkaline activators with ratio solid/liquid 4 by unit of volume, and the sodium silicate to NaOH (SS:SH) ratio of 2:1. The X-ray Diffraction (XRD), mercury intrusion porosimetry (MIP) were determined. The different percentages of the precursors and the alkaline activators were optimised to produce paste samples. The compressive strength of samples with 10 vt.% EAF-Slag was close to 20.7 MPa after 90 curing days. The mechanical properties were further increased up to 30 MPa by increasing the percentage of EAF-Slag to 50 vt.%. This demonstrates a new potential for re-using waste material for various constructional applications.


2021 ◽  
Vol 5 (12) ◽  
pp. 315
Author(s):  
Dhruv Sood ◽  
Khandaker M. A. Hossain

Alkali-activated binders (AABs) are developed using a dry mixing method under ambient curing incorporating powder-form reagents/activators and industrial waste-based supplementary cementitious materials (SCMs) as precursors. The effects of binary and ternary combinations/proportions of SCMs, two types of powder-form reagents, fundamental chemical ratios (SiO2/Al2O3, Na2O/SiO2, CaO/SiO2, and Na2O/Al2O3), and incorporation of polyvinyl alcohol (PVA) fibers on fresh state and hardened characteristics of 16 AABs were investigated to assess their performance for finding suitable mix compositions. The mix composed of ternary SCM combination (25% fly-ash class C, 35% fly-ash class F, and 40% ground granulated blast furnace slag) with multi-component reagent combination (calcium hydroxide and sodium metasilicate = 1:2.5) was found to be the most optimum binder considering all properties with a 56 day compressive strength of 54 MPa. The addition of 2% v/v PVA fibers to binder compositions did not significantly impact the compressive strengths. However, it facilitated mitigating shrinkage/expansion strains through micro-confinement in both binary and ternary binders. This research bolsters the feasibility of producing ambient cured powder-based cement-free binders and fiber-reinforced, strain-hardening composites incorporating binary/ternary combinations of SCMs with desired fresh and hardened properties.


2019 ◽  
Vol 138 (2) ◽  
pp. 879-887
Author(s):  
Pavel Krivenko ◽  
Danutė Vaičiukynienė ◽  
Aras Kantautas ◽  
Vitoldas Vaitkevičius ◽  
Evaldas Šerelis

2021 ◽  
Vol 11 (9) ◽  
pp. 3840 ◽  
Author(s):  
Alex Maldonado-Alameda ◽  
Jofre Mañosa ◽  
Jessica Giro-Paloma ◽  
Joan Formosa ◽  
Josep Maria Chimenos

Alkali-activated binders (AABs) stand out as a promising alternative to replace ordinary Portland cement (OPC) due to the possibility of using by-products and wastes in their manufacturing. This paper assessed the potential of weathered bottom ash (WBA) from waste-to-energy plants and PAVAL® (PV), a secondary aluminium recycling process by-product, as precursors of AABs. WBA and PV were mixed at weight ratios of 98/2, 95/5, and 90/10. A mixture of waterglass (WG) and NaOH at different concentrations (4 and 6 M) was used as the alkaline activator solution. The effects of increasing NaOH concentration and PV content were evaluated. Alkali-activated WBA/PV (AA-WBA/PV) binders were obtained. Selective chemical extractions and physicochemical characterization revealed the formation of C-S-H, C-A-S-H, and (N,C)-A-S-H gels. Increasing the NaOH concentration and PV content increased porosity and reduced compressive strength (25.63 to 12.07 MPa). The leaching potential of As and Sb from AA-WBA/PV exceeded the threshold for acceptance in landfills for non-hazardous waste.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1673 ◽  
Author(s):  
Hyeongmin Son ◽  
Sol Moi Park ◽  
Joon Ho Seo ◽  
Haeng Ki Lee

This present study investigates the effects of CaSO4 incorporation on the pore structure and drying shrinkage of alkali-activated slag and fly ash. The slag and fly ash were activated at a 5:5 ratio by weighing with a sodium silicate. Thereafter, 0%, 5%, 10%, and 15% of CaSO4 were incorporated to investigate the changes in phase formation and internal pore structure. X-Ray Diffraction (XRD), thermogravimetry (TG)/derivative thermogravimetry (DTG), mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and drying shrinkage tests were carried out to find the correlation between the pore structure and drying shrinkage of the specimens. The results showed that CaSO4 incorporation increased the formation of thenardite, and these phase changes affected the pore structure of the activated fly ash and slag. The increase in the CaSO4 content increased the pore distribution in the mesopore. As a result, the capillary tension and drying shrinkage decreased.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1927
Author(s):  
Lei Jin ◽  
Guodong Huang ◽  
Yongyu Li ◽  
Xingyu Zhang ◽  
Yongsheng Ji ◽  
...  

Setting time and mechanical properties are key metrics needed to assess the properties of municipal solid waste incineration (MSWI) bottom ash alkali-activated samples. This study investigated the solidification law, polymerization, and strength development mechanism in response to NaOH and liquid sodium silicate addition. Scanning electron microscopy and X-ray diffraction were used to identify the formation rules of polymerization products and the mechanism of the underlying polymerization reaction under different excitation conditions. The results identify a strongly alkaline environment as the key factor for the dissolution of active substances as well as for the formation of polymerization products. The self-condensation reaction of liquid sodium silicate in the supersaturated state (caused by the loss of free water) is the major reason for the rapid coagulation of alkali-activated samples. The combination of both NaOH and liquid sodium silicate achieves the optimal effect, because they play a compatible coupling role.


Sign in / Sign up

Export Citation Format

Share Document