Potential Oil-and-Gas Presence in the Sedimentary Basins of the Arctic Seas of Russia as Compared with the Largest Developed Basins of the World Ocean

Author(s):  
Alexey L. Piskarev ◽  
Mikhail Yu. Shkatov
2020 ◽  
Vol 17 (36) ◽  
pp. 506-526
Author(s):  
Oleg M PRISCHEPA ◽  
Yuri V NEFEDOV ◽  
Aydar Kh IBATULLIN

The study of the hydrocarbon potential of the Arctic is being considered in Russia as the most crucial direction of preparing a new raw material base of oil and gas, which will replace the extracted reserves in traditional areas of development during the second third of this century. The sharp fall in global hydrocarbon prices has led to a reduction in research and exploration costs, especially in hard-to-reach areas and hard-to-recover reserves as well as the need to determine the contribution to the country's fuel and energy balance from the hydrocarbons development of the Arctic zone, including the shelf, without which it is impossible to plan and develop new expensive projects. A fair assessment of oil and gas potential, based on a set of ideas about the processes of formation of sedimentary basins and oil and gas generation processes, contributed to obtaining new geophysical information on the results of seismic work executed in the Arctic zone of the Russian Federation between 2010 and 2020. A quantitative assessment of oil and gas resources was performed using geological analogies (for wellstudied geological and geophysical areas) and the volume-genetic method (for less studied basins). It showed significant differences from the most well-known assessments of the Arctic, both in terms of the total volume of hydrocarbons and their phase composition. It was concluded that there is ambiguity in assessing the potential of deepwater zones of the Arctic seas. Because of that, it is important to study coastal and shallow areas, especially oil content.


2021 ◽  
Vol 9 (3) ◽  
pp. 258
Author(s):  
Alexey S. Egorov ◽  
Oleg M. Prischepa ◽  
Yury V. Nefedov ◽  
Vladimir A. Kontorovich ◽  
Ilya Y. Vinokurov

The evolutionary-genetic method, whereby modern sedimentary basins are interpreted as end-products of a long geological evolution of a system of conjugate palaeo-basins, enables the assessment of the petroleum potential of the Western sector of the Russian Arctic. Modern basins in this region contain relics of palaeo-basins of a certain tectonotype formed in varying geodynamic regimes. Petroleum potential estimates of the Western Arctic vary broadly—from 34.7 to more than 100 billion tons of oil equivalent with the share of liquid hydrocarbons from 5.3 to 13.4 billion tons of oil equivalent. At each stage of the development of palaeo-basins, favourable geological, geochemical and thermobaric conditions have emerged and determined the processes of oil and gas formation, migration, accumulation, and subsequent redistribution between different complexes. The most recent stage of basin formation is of crucial importance for the modern distribution of hydrocarbon accumulations. The primary evolutionary-genetic sequence associated with the oil and gas formation regime of a certain type is crucial for the assessment of petroleum potential. Tectonic schemes of individual crustal layers of the Western sector of the Russian Arctic have been compiled based on the interpretation of several seismic data sets. These schemes are accompanied by cross-sections of the Earth’s crust alongside reference geophysical profiles (geo-traverses). A tectonic scheme of the consolidated basement shows the location and nature of tectonic boundaries of cratons and platform plates with Grenvillian basement as well as Baikalian, Caledonian, Hercynian, and Early Cimmerian fold areas. Four groups of sedimentary basins are distinguished on the tectonic scheme of the platform cover according to the age of its formation: (1) Riphean-Mesozoic on the Early Precambrian basement; (2) Paleozoic-Cenozoic on the Baikalian and Grenvillian basements; (3) Late Paleozoic-Cenozoic on the Caledonian basement; (4) Mesozoic-Cenozoic, overlying a consolidated basement of different ages. Fragments of reference sections along geo-traverses illustrate features of the deep structure of the main geo-structures of the Arctic shelf and continental regions of polar Russia.


2021 ◽  
pp. 57-68
Author(s):  
N. Yu. Moskalenkо

The relevance of the article is associated with the importance of the object of the research. Dozens of unique and giant oil and gas fields, such as Urengoyskoye, Medvezhye, Yamburgskoye, Vyngapurovskoye, Messoyakhskoye, Nakhodkinskoye, Russkoye, have been identified within the Cenomanian complex. The main feature of Cenomanian rocks is their slow rock cementation. This leads to significant difficulties in core sampling and the following studies of it; that is the direct and most informative source of data on the composition and properties of rocks that create a geological section.The identification of the factors, which determine the slow rock cementation of reservoir rocks, allows establishing a certain order in sampling and laboratory core studies. Consequently, reliable data on the reservoir and estimation of hydrocarbon reserves both of discovered and exploited fields and newly discovered fields that are being developed on the territory of the Gydan peninsula and the Bolshekhetskaya depression will be obtained. This study is also important for the exploration and development of hydrocarbon resources of the continental shelf in the waters of the Arctic seas of Russia as one of the most promising areas.As a result of the analysis, it was found that the formation of rocks of the PK1-3 Cenomanian age of the Bolshekhetskaya depression happened under conditions of normal compaction of terrigenous sedimentary rocks that are located in the West Siberian basin. Slow rock cementation of reservoir rocks is associated with relatively low thermobaric conditions of their occurrence, as well as the low content of clay and absence of carbonate cements. Their lithological and petrophysical characteristics are close to the analogous Cenomanian deposits of the northern fields of Western Siberia and can be applied to other unconsolidated rocks studied areas.


1993 ◽  
Vol 67 (S35) ◽  
pp. 1-35 ◽  
Author(s):  
Louie Marincovich

The marine molluscan fauna of the Prince Creek Formation near Ocean Point, northern Alaska, is of Danian age. It is the only diverse and abundant Danian molluscan fauna known from the Arctic Ocean realm, and is the first evidence for an indigenous Paleocene shallow-water biota within a discrete Arctic Ocean Basin faunal province.A high percentage of endemic species, and two endemic genera, emphasize the degree to which the Arctic Ocean was geographically isolated from the world ocean during the earliest Tertiary. Many of the well-preserved Ocean Point mollusks, however, also occur in Danian faunas of the North American Western Interior, the Canadian Arctic Islands, Svalbard, and northwestern Europe, and are the basis for relating this Arctic Ocean fauna to that of the Danian world ocean.The Arctic Ocean was a Danian refugium for some genera that became extinct elsewhere during the Jurassic and Cretaceous. At the same time, this nearly landlocked ocean fostered the evolution of new taxa that later in the Paleogene migrated into the world ocean by way of the northeastern Atlantic. The first Cenozoic occurrences are reported for the bivalves Integricardium (Integricardium), Oxytoma (Hypoxytoma), Placunopsis, Tancredia (Tancredia), and Tellinimera, and the oldest Cenozoic records given for the bivalves Gari (Garum), Neilo, and Yoldia (Cnesterium). Among the 25 species in the molluscan fauna are four new gastropod species, Amauropsis fetteri, Ellipsoscapha sohli, Mathilda (Fimbriatella) amundseni, and Polinices (Euspira) repenningi, two new bivalve genera, Arcticlam and Mytilon, and 15 new bivalve species, Arcticlam nanseni, Corbula (Caryocorbula) betsyae, Crenella kannoi, Cyrtodaria katieae, Gari (Garum) brouwersae, Integricardium (Integricardium) keenae, Mytilon theresae, Neilo gryci, Nucula (Nucula) micheleae, Nuculana (Jupiteria) moriyai, Oxytoma (Hypoxytoma) hargrovei, Placunopsis rothi, Tancredia (Tancredia) slavichi, Tellinimera kauffmani, and Yoldia (Cnesterium) gladenkovi.


Author(s):  
E. A. Lavrenova ◽  
Yu. V. Shcherbina ◽  
R. A. Mamedov

Background. Three prospective sedimentary complexes — Aptian-Upper Cretaceous, Paleogene and Neogene — are predicted in the waters of the Eastern Arctic seas. Here, the search for oil and gas is associated with harsh Arctic conditions at sea, as well as with high geological risks and significant expenditures under the conditions of poor knowledge of the region. In this regard, the localisation of prospecting drilling objects and the assessment of the geological risks of deposit discovery should be carried out.Aim. To assess geological risks and to determine the probability of discovering oil and gas fields, as well as to identify prospective areas for licensing and exploration in the water areas of the Eastern Arctic.Materials and methods. Structural and heat flow maps along with the results of geochemical analysis, as well as typical terrestrial sections were used as initial materials. Using the method of basin analysis, the modelling of generation-accumulation hydrocarbon systems (GAHS) and the quantitative assessment of its hydrocarbon potential in the Eastern Arctic water area was carried out. The assessment of geological risks and the probability of field discovery was performed using the conventional methodology widely applied by oil companies.Results. The GAHS modelling using a variation approach showed that, regardless of the kerogen type, with average values of Сorg in sediments, potential oil-and-gas source strata (OGSS) were capable of saturating the prospective objects with hydrocarbons. The “OGSS assessment” factor was determined as “encouraging” (0.7). Active geodynamic regime and the manifestation of several folding phases within the study area provided favourable conditions for the formation of anticlinaltraps in sedimentary basins. However, the cap rock quality rating was assessed as “neutral” (0.5). The overall risk for the “Trap assessment” factor was estimated based on the minimum criterion of 0.5.Conclusion. The most prospective areas recommended for licensing were selected, and the recommendations for further geological exploration work in these areas were given in order to clarify their hydrocarbon potential and reduce geological risks.


1984 ◽  
Vol 21 (02) ◽  
pp. 182-185
Author(s):  
Ben C. Gerwick

Rapidly expanding development is taking place in the Arctic and sub-Arctic seas of Alaska and Canada, driven by the discovery of immense resources of oil and gas and favorable geophysical conditions in adjoining areas. The Arctic regions are dominated by sea ice, from the central polar pack to the pressure ridges and rubble piles that form in the shear zone along the periphery. In the east, adjoining Labrador and Newfoundland, icebergs are encountered. Storm waves and surges during the summer, strong seismicity in certain areas, and weak and construction-difficult soils in many areas combine to make the design and construction of platforms abnormally difficult. Existing platforms for offshore exploration include sand and gravel islands in shallow-water areas, floating drillships accompanied by icebreakers, a concrete-caisson-retained island in the Canadian Beaufort Sea, and a converted VLCC, grounded on a prepared embankment and given additional protection by artificially constructed ice rubble. At the present time, two steel caissons, designed to be filled with sand after founding, and one floating drilling structure are under construction. In the design and planning stage are a number of new concepts for caissons, mostly constructed of prestressed lightweight concrete, designed to resist global forces in the range of 150 000 kips or more and local concentrated forces of 800 to 1000 psi over small areas. Prestressed lightweight concrete appears well suited to the demands of Arctic service. The towing, deployment, founding, and subsequent removal of exploratory platforms demands consideration of a wide variety of naval architectural aspects. One of the more critical areas facing designers is how to determine the forces and displacements caused by impact from a large ice floe or berg. The compliance of the structure and the hydrodynamic dissipation of kinetic energy need to be considered, as well as the crushing of the ice. The successful development of the Arctic demands consideration not only of a wide range of engineering and naval architectural aspects but also their integration with ecological, social, political and economic considerations.


2020 ◽  
Vol 24 (4) ◽  
pp. 16-19 ◽  
Author(s):  
Ya.Yu. Blinovskaya ◽  
O.A. Kulikova ◽  
E.A. Mazlova ◽  
M.V. Gavrilo

The first steps have been taken to study microplastics in the beach areas of the Arctic seas and the southern part of the Far East. Researches have shown that the average concentration in the areas studied is about 1 particle per kilogram of beach ground which is significantly lower than in other regions of the world. However due to the difficult access and irregular nature of the work an objective situation cannot be presented yet.


1972 ◽  
Vol 72 (1) ◽  
pp. 273-275
Author(s):  
I. A. Fedosseyev ◽  
A. F. Plakhotnick

Though Russia, in contrast with England, had no broad access to the oceans, Russian oceanographers always took a great interest in the world ocean investigations. To confirm this we would first of all like to mention the Russian cruises around the world, made by I. F. Krusenstern and Ju. F. Lisjansky in 1803–06, V. M. Golovnin in 1806–13 and 1817–19, M. P. Lazarev in 1819–21 and 1822–25 (the second voyage, the main result of which was the discovery of the Antarctic Continent, was made together with F. F. Bellingshauzen), O. E. Kotsebu in 1815–18 and 1823–26, and F. O. Litke in 1826–29. The names of several Russian explorers who carried on important work in various parts of the Arctic and the Pacific Oceans in different periods of the nineteenth century are well known. At one time valuable results of the oceanological investigations, carried out by Admiral S. O. Makarov on the ship Vitjaz in the Pacific Ocean in 1886–89, attracted much attention. The fact that Vitjaz is lettered on the pediment of the Oceanographical Museum of Monaco among the ten ships most distinguished in oceanographical explorations from the whole world testifies to the scientific importance of Makarov's investigations.


Sign in / Sign up

Export Citation Format

Share Document