Failure Modes and Maximum Loads of Notched Concrete Beams

Author(s):  
Zihai Shi
Keyword(s):  
2021 ◽  
pp. 136943322098166
Author(s):  
Wang Xin ◽  
Shi Jianzhe ◽  
Ding Lining ◽  
Jin Yundong ◽  
Wu Zhishen

A combination of coral reef sand (CRS) concrete and fibre-reinforced polymer (FRP) bars provides an effective solution to the durability deficiency in conventional RC structures. This study experimentally investigates the durability of CRS concrete beams reinforced with basalt FRP (BFRP) bars in a simulated marine environment. Flexural tests are conducted on a total of fourteen CRS concrete beams aged in a cyclic wet-dry saline solution at temperatures of 25, 40 and 55°C. The variables comprise the types of reinforcement (steel and BFRP), the aging duration and the temperature. The failure modes, capacities, deflections and crack development of the beams are analysed and discussed. The results indicate that the ultimate load of the beams exhibits no degradation after aging, whereas the failure mode of the BFRP-CRS concrete beams transition from flexure to shear, which is caused by the degradation in the mechanical properties of the stirrups. The aged BFRP-CRS concrete beams show a substantial increase of over 70% in their initial stiffness compared with the control beams (beams without aging) and a substantial decrease in their crack width after aging due to the prolonged maturation of the concrete. Furthermore, a formula for calculating the shear capacity in the existing code is modified by a partial factor equal to 2, which can predict the capacity of a CRS concrete beam reinforced with BFRP bars in a marine environment.


2017 ◽  
Vol 10 (1) ◽  
pp. 30-40
Author(s):  
G. SAVARIS ◽  
R. C. A. PINTO

Abstract Self-consolidating concrete is characterized by its high flowability, which can be achieved with the addition of superplasticizer and the reduction of the amount and size of coarse aggregates in the concrete mix. This high flowability allows the concrete to properly fill the formwork without any mechanical vibration. The reduction in volume and particle size of the coarse aggregates may result in lower shear strength of beams due to a reduced aggregate interlock. Therefore, an experimental investigation was conducted to evaluate the influence of the reduction in the volume fraction and the nominal size of coarse aggregate on concrete shear strength of self-consolidating beams. Six concrete mixes were produced, four self-consolidating and two conventionally vibrated. A total of 18 beams, with flexural reinforcement but without shear reinforcement were cast. These beams were tested under a four-point loading condition. Their failure modes, cracking patterns and shear resistances were evaluated. The obtained shear resistances were compared to the theoretical values given by the ACI-318 and EC-2 codes. The results demonstrated a lower shear resistance of self-consolidating concrete beams, caused mainly due to the reduced aggregate size.


2006 ◽  
Vol 324-325 ◽  
pp. 995-998
Author(s):  
Cheol Woo Park ◽  
Jong Sung Sim

Even though the application of fiber reinforced polymer (FRP) as a concrete reinforcement becomes more common with various advantages, one of the inherent shortcomings may include its brittleness and on-site fabrication and handling. Therefore, the shape of FRP products has been limited only to a straight bar or sheet type. This study suggests a new technique to use glass fiber reinforced polymer (GFRP) bars for the shear reinforcement in concrete beams, and investigates its applicability. The developed GFRP stirrup was used in the concrete instead of ordinary steel stirrups. The experimental program herein evaluates the effectiveness of the GFRP stirrups with respect to different shear reinforcing ratios under three different shear span-to-depth testing schemes. At the same shear reinforcing ratio, the ultimate loads of the beams were similar regardless the shear reinforcing materials. Once a major crack occurs in concrete, however, the failure modes seemed to be relatively brittle with GFRP stirrups. From the measured strains on the surface of concrete, the shear stresses sustained by the stirrups were calculated and the efficiency of the GFRP stirrups was shown to be 91% to 106% depending on the shear span-to-depth ratio.


2018 ◽  
Vol 250 ◽  
pp. 03003
Author(s):  
Noor Suhaida Galip ◽  
Roslli Noor Mohamed ◽  
Ramli Abdullah

The bent-up bars have not been used as shear reinforcement in beams since the past 40 years or so. In all cases of design and construction nowadays, shear forces are resisted by vertical links only. Some complications in installing the multiple set of bent-up bars, the less opportunity to have sufficient number of bent-up bars due to small number of flexural reinforcement provided at the mid-span of the beams and also the large anchorage required for the horizontal portion of the bars beyond the upper end of the bend could be the reasons behind this. This paper presents the results of tests on five rectangular reinforced concrete beams in which the effectiveness of welded inclined bars (WIB) as shear reinforcement was studied. Two of the beams were controlled specimens, with no shear reinforcement in one, and full design vertical links in another. The other three beams were provided with three different quantities of WIB, measured in terms of area to distance ratio, Asw / S as shear reinforcement in the shear spans. All beams were tested to failure under two point loads with a shear span to effective depth ratio of 2.34, which would ensure that the failure was due to shear unless their shear capacities were larger than the flexural capacity. The performances of the beams were measured in terms of deflection, crack formation, strains in WIB and on the concrete surfaces in the shear region, ultimate loads and failure modes. The results show that WIB alone is capable of carrying the whole shear forces in the beam, and larger shear capacities are achieved with a larger quantity of WIB, and a higher grade of the bars used. The beam with WIB requires 22% less in the quantity of Asw / S compared to that with vertical links to achieve the same shear resistance. These suggest that WIB can be used as an effective system of shear reinforcement in beams.


2020 ◽  
Vol 10 (3) ◽  
pp. 822 ◽  
Author(s):  
Shatha Alasadi ◽  
Payam Shafigh ◽  
Zainah Ibrahim

The purpose of this paper is to investigate the flexural behavior of over-reinforced concrete beam enhancement by bolted-compression steel plate (BCSP) with normal reinforced concrete beams under laboratory experimental condition. Three beams developed with steel plates were tested until they failed in compression compared with one beam without a steel plate. The thicknesses of the steel plates used were 6 mm, 10 mm, and 15 mm. The beams were simply supported and loaded monotonically with two-point loads. Load-deflection behaviors of the beams were observed, analyzed, and evaluated in terms of spall-off concrete loading, peak loading, displacement at mid-span, flexural stiffness (service and post-peak), and energy dissipation. The outcome of the experiment shows that the use of a steel plate can improve the failure modes of the beams and also increases the peak load and flexural stiffness. The steel development beams dissipated much higher energies with an increase in plate thicknesses than the conventional beam.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2097 ◽  
Author(s):  
Lei Wang ◽  
Jiwang Zhang ◽  
Changshi Huang ◽  
Feng Fu

In this study, a comparative study of carbon fiber reinforced polymer (CFRP) bar and steel–carbon fiber composite bar (SCFCB) reinforced coral concrete beams was made through a series of experimental tests and theoretical analyses. The flexural capacity, crack development and failure modes of CFRP and SCFCB-reinforced coral concrete were investigated in detail. They were also compared to ordinary steel-reinforced coral concrete beams. The results show that under the same conditions of reinforcement ratios, the SCFCB-reinforced beams exhibit better performance than CFRP-reinforced beams, and stiffness is slightly lower than that of steel-reinforced beams. Under the same load conditions, the crack width of SCFCB beams was between that of steel-reinforced beams and CFRP bar-reinforced beams. Before the steel core yields, the crack growth rate of SCFCB beam is similar to the steel-reinforced beams. SCFCB has a higher strength utilization rate—about 70–85% of its ultimate strength. Current design guidance was also examined based on the test results. It was found that the existing design specifications for FRP-reinforced normal concrete is not suitable for SCFCB-reinforced coral concrete structures.


Sign in / Sign up

Export Citation Format

Share Document