Establishment of Ulmus pumila seedlings on steppe slopes of the northern Mongolian mountain taiga

2009 ◽  
Vol 35 (5) ◽  
pp. 563-572 ◽  
Author(s):  
Choimaa Dulamsuren ◽  
Markus Hauck ◽  
Suran Nyambayar ◽  
Dalaikhuu Osokhjargal ◽  
Christoph Leuschner
Keyword(s):  
2021 ◽  
Vol 31 ◽  
pp. 00014
Author(s):  
Oleg Kupiyanov ◽  
Andrey Kupiyanov ◽  
Baurjan Turalin

The presence of non-native plants on dumps in Kuzbass was studied. 26 plants included in the Black Book of Flora of Siberia were identified: Acer negundo, Amoria hybrida, Atriplex sagittata, Conium maculatum, Conyza canadensis, Echinochloa crusgalli, Echinocystis lobata, Echium vulgare, Elaeagnus angustifolia, Epilobium adenocaulon, Hordeum jubatum, Impatiens glandulifera, Lactuca serriola, Lepidium densiflorum, Lepidotheca suaveolens, Lupinus polyphyllus, Malus baccata, Medicago sativa, Melilotus officinalis, Oenothera villosa, Pastinaca sativa, Plantago lanceolata, Senecio vulgaris, Solidago сanadensis, Tripleurospermum inodorum, Ulmus pumila. Non-native plants occur at all stages of syngenesis and are of great importance in the formation of the vegetation on dumps. Colonophytes-agriophytes and epecophytes have a high degree of naturalization: Amoria hybrida (mountain taiga subbelt), Epilobium adenocaulon, Medicago sativa, Melilotus officinalis, Oenothera villosa (mountain taiga subbelt), Pastinaca sativa, Tripleurospermum inodorum, Ulmus pumila (southern forest-steppe subzone).


2009 ◽  
Vol 66 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Choimaa Dulamsuren ◽  
Markus Hauck ◽  
Suran Nyambayar ◽  
Martin Bader ◽  
Dalaikhuu Osokhjargal ◽  
...  

Author(s):  
B. L. Redmond ◽  
Christopher F. Bob

The American Elm (Ulmus americana L.) has been plagued by Dutch Elm Disease (DED), a lethal disease caused by the fungus Ceratocystis ulmi (Buisman) c. Moreau. Since its initial appearance in North America around 1930, DED has wrought inexorable devastation on the American elm population, triggering both environmental and economic losses. In response to the havoc caused by the disease, many attempts have been made to hybridize U. americana with a few ornamentally less desirable, though highly DED resistant, Asian species (mainly the Siberian elm, Ulmus pumila L., and the Chinese elm Ulmus parvifolia Jacq.). The goal is to develop, through breeding efforts, hybrid progeny that display the ornamentally desirable characteristics of U. americana with the disease resistance of the Asian species. Unfortunately, however, all attempts to hybridize U. americana have been prevented by incompatibility. Only through a firm understanding of both compatibility and incompatibility will it be possible to circumvent the incompatibility and hence achieve hybridization.


Author(s):  
V. Fedorov ◽  
E. Sleptsov ◽  
K. Plemyashov

A growth in the number of deer and an increase in their productivity are closely related to the solution of the complex problem of reproduction and rational use of deer females. Significant damage to reindeer husbandry is caused by the barrenness of northern domestic deer, the level of which has been quite high in recent years. So, in the Republic of Sakha, on 01.01.2020, the number of domesticated reindeer was 152,068, of which female deer and heifers — 71,818, offspring per 100 females — 59, business yield amounted to 52 fawns per 100 females. The causes of infertility are very diverse, as the natural and climatic conditions of the breeding zones have a significant influence on the reproductive function of reindeer. In Yakutia, the main population of northern domestic deer is bred in mountain taiga and tundra natural-climatic zones, so there are about 55 thousand deer in the mountain taiga zone and more than 65 thousand deer in the tundra zone. In this regard, the study of the peculiarities of the postpartum period course in domestic reindeer females, its morphophysiology, and behavioral reactions depending on the natural and climatic conditions of breeding is of great importance.


2002 ◽  
pp. 32-43
Author(s):  
V. I. Vlasenko ◽  
M. G. Erunova ◽  
I. S. Scerbinina

The reserve “Stolby” is characteristic key plot of the mountain-taiga and subtaiga-forest steppe altitudinal belts in the East Sayan Mountains, where anthropogenic influence is the least pronounced. It was founded in 1925, in 15 km southward of Krasnoyarsk city, on north-west spurs of the Western Sayan Mountains which adjoin closely to right bank of the Yenisei River bordering upon the Middle Siberian Plateau. Reserve's physiography is characterized by low mountain and middle mountain erosion-accumulation relief with absolute heights of 200-800 m. Low mountain part (200-500 m) is composed of loose sedimentary rocks. In the middle mountain part of the reserve (500-800 m) there are outcrops of sienite rocks of various stages of destruction. Vegetation and soils of the reserve change in agreement with absolute heights and climate. In low mountains spread the subtaiga and forest-steppe leaved-light needle forests on mountain grey forest soils (8.1 % of reserve territory); the middle mountain part is occupied by the light needle and dark needle taiga forests on mountain podzol soils (91.9 % of the area). As the basement for vegetation map we took the map of forest environments of reserve by T. N. Butorina compiled according to materials of land forest management of 1977 year. As the result of forest management near 2000 biogeocoenoses were distinguished. The type of biogeocoenosis, according to V. N. Sukachev, is selected as mapping unit. Biogeocoenoses were united into 70 groups of forest types, representing 21 series of associations which are reflected in the map legend (Fig. 1). The main goal of map is to show the territorial distribution of groups and series of types of biogeocoenoses in the main structural units - altitudinal be't complexes (ВПК) which are equivalents of altitudinal vegetation belts. For designation of forest tree species various kinds of hatches were used. Formations of Siberian pine, larch, pine, fir, spruce, birch and aspen forests are shown on the map. Within the ВПК arabic numerals show the groups of types of biogeocoenoses (forest types), united into series according to similarity of dominants in ground layer. The mountain-taiga ВПК includes the following series and groups of types of biogeocoenoses: dwarf-shrub-moss (1-4); sedge-moss (5-9); bilberry-low herb-moss (10-14); tall herb-sedge (15-19); tall herb-wood sour-moss (20-26); tall herb-small reed (27-32). The subtaiga-forest steppe ВГ1К embraces: shrub steppificated (33-34); shrub-forb steppificated (35-38): sedge- bilberry (39-40); sedge-forb (41-43); bracken (44); small reed-forb (45); bilberrv-forb- sedge (46, 47); forb-tall herb (48-51); tall herb (52-55); wet tall herb-small reed (56-59); fern-tall herb (60). Intrazonal phytocoenoses: brook tall herb (61-63); brook shrub (64-68); lichen-moss (69); cowberry (70). In 1999-2000 on the base of topographic map in a scale 1 : 25 000, map of forest environments, transformed by us into vegetation map of the reserve, M. J . Erunova and I. S. Scerbinina worked out an electronic variant. For this project the instrumental facilities of GIS, GeoDraw and GeoGraph (CGI IG RAS, Moscow) and programs of Geophyt were used.


2000 ◽  
pp. 26-31
Author(s):  
E. I. Parfenova ◽  
N. M. Chebakova

Global climate warming is expected to be a new factor influencing vegetation redistribution and productivity in the XXI century. In this paper possible vegetation change in Mountain Altai under global warming is evaluated. The attention is focused on forest vegetation being one of the most important natural resources for the regional economy. A bioclimatic model of correlation between vegetation and climate is used to predict vegetation change (Parfenova, Tchebakova 1998). In the model, a vegetation class — an altitudinal vegetation belt (mountain tundra, dark- coniferous subalpine open woodland, light-coniferous subgolets open woodland, dark-coniferous mountain taiga, light-coniferous mountain taiga, chern taiga, subtaiga and forest-steppe, mountain steppe) is predicted from a combination of July Temperature (JT) and Complex Moisture Index (CMI). Borders between vegetation classes are determined by certain values of these two climatic indices. Some bioclimatic regularities of vegetation distribution in Mountain Altai have been found: 1. Tundra is separated from taiga by the JT value of 8.5°C; 2. Dark- coniferous taiga is separated from light-coniferous taiga by the CMI value of 2.25; 3. Mountain steppe is separated from the forests by the CMI value of 4.0. 4. Within both dark-coniferous and light-coniferous taiga, vegetation classes are separated by the temperature factor. For the spatially model of vegetation distribution in Mountain Altai within the window 84 E — 90 E and 48 N — 52 N, the DEM (Digital Elevation Model) was used with a pixel of 1 km resolution. In a GIS Package IDRISI for Windows 2.0, climatic layers were developed based on DEM and multiple regressions relating climatic indices to physiography (elevation and latitude). Coupling the map of climatic indices with the authors' bioclimatic model resulted into a vegetation map for the region of interest. Visual comparison of the modelled vegetation map with the observed geobotanical map (Kuminova, 1960; Ogureeva, 1980) showed a good similarity between them. The new climatic indices map was developed under the climate change scenario with summer temperature increase 2°C and annual precipitation increase 20% (Menzhulin, 1998). For most mountains under such climate change scenario vegetation belts would rise 300—400 m on average. Under current climate, the dark-coniferous and light-coniferous mountain taiga forests dominate throughout Mountain Altai. The chern forests are the most productive and floristically rich and are also widely distributed. Under climate warming, light-coniferous mountain taiga may be expected to transform into subtaiga and forest-steppe and dark-coniferous taiga may be expected to transform partly into chern taiga. Other consequences of warming may happen such as the increase of forest productivity within the territories with sufficient rainfall and the increase of forest fire occurrence over territories with insufficient rainfall.


Solid Earth ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 1085-1094 ◽  
Author(s):  
Jiao Tang ◽  
Carlos Alberto Busso ◽  
Deming Jiang ◽  
Ala Musa ◽  
Dafu Wu ◽  
...  

Abstract. As a native tree species, Ulmus pumila var. sabulosa (sandy elm) is widely distributed in the Horqin Sandy Land, China. However, seedlings of this species have to withstand various depths of sand burial after emergence because of increasing soil degradation, which is mainly caused by overgrazing, climate change, and wind erosion. An experiment was conducted to evaluate the changes in its survivorship, morphological traits, and biomass allocation when seedlings were buried at different burial depths: unburied controls and seedlings buried vertically up to 33, 67, 100, or 133 % of their initial mean seedling height. The results showed that partial sand burial treatments (i.e., less than 67 % burial) did not reduce seedling survivorship, which still reached 100 %. However, seedling mortality increased when sand burial was equal to or greater than 100 %. In comparison with the control treatment, seedling height and stem diameter increased at least by 6 and 14 % with partial burial, respectively. In the meantime, seedling taproot length, total biomass, and relative mass growth rates were at least enhanced by 10, 15.6, and 27.6 %, respectively, with the partial sand burial treatment. Furthermore, sand burial decreased total leaf area and changed biomass allocation in seedlings, partitioning more biomass to aboveground organs (e.g., leaves) and less to belowground parts (roots). Complete sand burial after seedling emergence inhibited its re-emergence and growth, even leading to death. Our findings indicated that seedlings of sandy elm showed some resistance to partial sand burial and were adapted to sandy environments from an evolutionary perspective. The negative effect of excessive sand burial after seedling emergence might help in understanding failures in recruitments of sparse elm in the study region.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2407
Author(s):  
Ser-Oddamba Byambadorj ◽  
Byung Bae Park ◽  
Jonathan O. Hernandez ◽  
Enkhchimeg Tsedensodnom ◽  
Otgonsaikhan Byambasuren ◽  
...  

Desertification is impeding the implementation of reforestation efforts in Mongolia. Many of these efforts have been unsuccessful due to a lack of technical knowledge on water and nutrient management strategies, limited financial support, and short-lived rainfall events. We investigated the effects of irrigation and fertilization on the morphophysiological traits of Populus sibirica Hort. Ex Tausch and Ulmus pumila L. and to suggest irrigation and fertilization strategies for reforestation. Different irrigation and fertilizer treatments were applied: no irrigation, 2 L h−1, 4 L h−1, and 8 L h−1 of water; no fertilizer, 2 L h−1 + NPK, 4 L h−1 + NPK, and 8 L h−1 + NPK; and no compost, 2 L h−1 + compost, 4 L h−1 + compost, and 8 L h−1 + compost. The leaf area (LA) and specific leaf area (SLA) of both species responded positively to 4 and 8 L h−1. Results also showed that the addition of either NPK or compost to 4 or 8 L h−1 irrigation resulted in a higher LA, SLA, and leaf biomass (LB). Total chlorophyll content decreased with irrigation in both species. The same pattern was detected when a higher amount of irrigation was combined with fertilizers. Lastly, we found that both diurnal and seasonal leaf water potential of plants grown in 4 or 8 L h−1 were significantly higher than those of plants grown in control plots. Therefore, 4 or 8 L h−1 with either NPK or compost has shown to be the optimal irrigation and fertilization strategy for the species in an arid and semiarid region of Mongolia. Results should provide us with a better understanding of tree responses to varying amounts of irrigation with or without fertilizer in pursuit of sustainable forest management in arid and semiarid ecosystems.


2014 ◽  
Vol 66 (1) ◽  
pp. 253-259 ◽  
Author(s):  
Matilda Djukic ◽  
Danijela Djunisijevic-Bojovic ◽  
Sladjana Samuilov

The aim of this paper was to examine how the heavy metals cadmium (Cd) and lead (Pb) influence the germination and early growth of seedlings of the fast-growing tree species Ulmus pumila L. Seeds were germinated and seedlings were hydroponically grown in a solution with Cd-nitrate and Pb-nitrate at concentrations of 20 ?M, 50 ?M and 90 ?M. Our results show that seeds can germinate in the presence of these two heavy metals at all of the applied concentrations with no significant reduction in qualitative (germination capacity, germination energy) or quantitative (germination intensity, mean germination period) germination parameters as compared to the controls. Early seedling development was also possible at higher concentrations of both heavy metals. Cd reduced hypocotyl length, but not significantly the length of radicles. Pb did not influence hypocotyl length and stimulated radicle length significantly (95%). These results could mark a step forward in defining the tolerance of U. pumila to the presence of Cd and Pb, and to the possibility of using this fast-growing tree which is resistant to different abiotic and biotic stresses, for phytoremediation or soil reclamation purposes.


Sign in / Sign up

Export Citation Format

Share Document