Compositional analysis and insecticidal activity of Eucalyptus globulus (family: Myrtaceae) essential oil against housefly (Musca domestica)

Acta Tropica ◽  
2012 ◽  
Vol 122 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Peeyush Kumar ◽  
Sapna Mishra ◽  
Anushree Malik ◽  
Santosh Satya
2021 ◽  
Vol 13 (1) ◽  
pp. 10854
Author(s):  
Arun D. SHARMA ◽  
Inderjeet KAUR

Worldwide use of chemical pesticides is on rise which is creating a big problem to environment and human health. Hence great interest has been generated to find out botanical leads having anti-pest properties from medicinal plants. The objective of this work was to evaluate the insecticidal potential of Eucalyptus globulus waste hydrosol obtained after essential oil distillation. Samples of Eucalyptus globulus genus were collected from near-by areas of study, and were hydro-distilled and their by-product ‘hydrosol was analyzed for phenolics and tannin determination. UV-VIS, FT-IR and fluorescent study was also conducted of by-product hydrosol. In addition, insecticidal activity of by-product hydrosol was also monitored against mealy bug. Substantial amount of phenolics and tannins were detected in the by-product hydrosol. UV and fluorescent spectroscopy revealed the presence of secondary metabolites. Significantly higher insecticidal activity was observed of by-product hydrosol against mealy bug. The results suggested that by-product hydrosol from Eucalyptus globulus essential oil distillation can be considered as potential candidates for bio-control of pests.


2020 ◽  
Vol 14 (3) ◽  
pp. 187-195
Author(s):  
Berhan Mengiste ◽  
Tizazu Zenebe ◽  
Kassahun Dires ◽  
Ermias Lulekal ◽  
Awol Mekonnen ◽  
...  

Background: The Eucalyptus globulus extractions have been used by the traditional healers to treat diseases in the study area. Our previous study revealed that the essential oil has antimicrobial and antifungal activity. This study determined phytochemical analysis, skin irritation, acute and subacute toxicity of Eucalyptus globulus essential oil in mice and rats. Methods: The phytochemicals were analyzed using GC-MS mass spectrometry. The acute toxicity study was determined at three dose levels of 1500 mg/kg, 1750mg/kg, and 2000 mg/kg. The essential oil limit test at a dose of 1000 mg/kg was administered to mice for 28 consecutive days for sub-acute toxicity study. The mice mortality, behavioral change, injury and other signs of illness were recorded once daily. Biochemical parameters were evaluated. Liver and kidney were analyzed for histopathological analyses. The 5% ointment formulation was applied to the rat skin to determine skin irritation effects. Results: The Eucalyptus globulus essential oil showed no effect on the mice at a dose of 1500mg/kg and below, but caused signs of toxicity and death at a dose of 1750mg/kg and above compared to the controls (p<0.05). The LD50 value was 1650 mg/kg. There was no significant difference (p > 0.05) in the body weights, gross abnormalities of the organs and biochemical parameters compared to the control at 1000 mg/kg subacute toxicity study. No histopathological changes were detected in the organs tested. The 5% ointment formulation did not show any abnormal skin reaction. Discussion: In the present study, the Eucalyptus globulus essential oil was comparable with other studies in terms of both chemical composition and its effects on sub-acute and topical application. Conclusion: This toxicity study demonstrated that Eucalyptus globulus essential oil is nontoxic at a relatively lower concentration.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2053 ◽  
Author(s):  
Yaoyao Peng ◽  
Karen Suzanne Bishop ◽  
Siew Young Quek

Feijoa is an aromatic fruit and the essential oil from feijoa peel could be a valuable by-product in the juicing industry. An initial comparison of the essential oil extraction methods, steam-distillation and hydro-distillation, was conducted. The volatile compounds in the essential oils from four feijoa cultivars were identified and semi-quantified by GC-MS and the aroma active compounds in each essential oil were characterized using SPME-GC-O-MS. Hydro-distillation, with a material to water ratio of 1:4 and an extraction time of 90 min, was the optimized extraction method for feijoa essential oil. The Wiki Tu cultivar produced the highest essential oil yield among the four selected cultivars. A total of 160 compounds were detected, among which 90 compounds were reported for the first time in feijoa essential oils. Terpenes and esters were dominant compounds in feijoa essential oil composition and were also major contributors to feijoa essential oil aroma. Key aroma active compounds in feijoa essential oils were α-terpineol, ethyl benzoate, (Z)-3-hexenyl hexanoate, linalool, (E)-geraniol, 2-undecanone, 3-octanone, α-cubebene, and germacrene D. This is the first report on the optimization of the extraction method and the establishment of the aroma profile of feijoa essential oils, with a comparison of four New Zealand grown cultivars.


2013 ◽  
Vol 37 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Patrícia Fontes Pinheiro ◽  
Vagner Tebaldi de Queiroz ◽  
Vando Miossi Rondelli ◽  
Adilson Vidal Costa ◽  
Tiago de Paula Marcelino ◽  
...  

The thrips, Frankliniella schultzei, and green peach aphid, Myzus persicae, cause direct damage to plants of economic importance and transmit phytoviruses, causing large economic losses. Chemical constituents of essential oils present a wide range of biological activities. The aim of this work was to evaluate insecticidal activity of essential oil from citronella grass, Cymbopogon winterianus, on F. schultzei and M. persicae. This essential oil was obtained by steam distillation and components were identified by GC/FID and GC/MS. A Potter spray tower was used to spray insects with the essential oil. The major constituents are geraniol (28.62%), citronellal (23.62%) and citronellol (17.10%). Essential oil of C. winterianus at 1% (w v-1) causes mortality in F. schultzei and M. persicae at 34.3% and 96.9%, respectively. The LC50 value for M. persicae was 0.36% and LC90 0.66%. Thus, citronella grass essential oil at 1% (w v-1) is more toxic to M. persicae than F. schultzei. This essential oil shows promise for developing pesticides to manage M. persicae.


Sign in / Sign up

Export Citation Format

Share Document