A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents

2017 ◽  
Vol 48 ◽  
pp. 110-119 ◽  
Author(s):  
Hugh S. O’Neill ◽  
Caroline C. Herron ◽  
Conn L. Hastings ◽  
Roel Deckers ◽  
Adolfo Lopez Noriega ◽  
...  
Technologies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 47
Author(s):  
Christian Wiraja ◽  
Xiaoyu Ning ◽  
Mingyue Cui ◽  
Chenjie Xu

Hydrogels, swellable hydrophilic polymer networks fabricated through chemical cross-linking or physical entanglement are increasingly utilized in various biomedical applications over the past few decades. Hydrogel-based microparticles, dressings and microneedle patches have been explored to achieve safe, sustained and on-demand therapeutic purposes toward numerous skin pathologies, through incorporation of stimuli-responsive moieties and therapeutic agents. More recently, these platforms are expanded to fulfill the diagnostic and monitoring role. Herein, the development of hydrogel technology to achieve diagnosis and monitoring of pathological skin conditions are highlighted, with proteins, nucleic acids, metabolites, and reactive species employed as target biomarkers, among others. The scope of this review includes the characteristics of hydrogel materials, its fabrication procedures, examples of diagnostic studies, as well as discussion pertaining clinical translation of hydrogel systems.


2020 ◽  
Author(s):  
Anna Kataki-Anastasakou ◽  
Jonathan C. Axtell ◽  
Selena Hernandez ◽  
RafalM. Dziedzic ◽  
Gary J. Balaich ◽  
...  

High affinity guest have been reported for the macrocyclic host cucurbit[7]uril (CB[7]), enabling widespread applications, but preventing CB[7] materials from being returned to their guest-free state for reuse. Here we present polyhedral boron clusters (carboranes) as strongly-binding, yet easily removable, guests for CB[7]. Aided by a Pd-catalyzed coupling of an azide anion, we prepared boron-functionalized 9<i>-</i>amino and 9-ammonium modified <i>ortho-</i>carboranes that bind to CB[7] with a <i>K<sub>a</sub></i>=10<sup>10</sup> M<sup>-1</sup>. Upon treatment with base, the <i>ortho</i>-carboranes<i> </i>readily undergo deboronation to yield anionic <i>nido</i>-carborane, a poor guest of CB[7], facilitating recovery of guest-free CB[7]. We showcase the utility of the modified <i>ortho</i>-carborane guest by recycling a CB[7]-functionalized resin. With this report, we introduce stimuli-responsive decomplexation as an additional consideration in the design of high affinity host-guest complexes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

With increasing incidence and mortality rates, cancer remains one of the most devastating global non-communicable diseases. Restricted dosages and decreased bioavailability, often results in lower therapeutic outcomes, triggering the development of resistance to conventionally used drug/gene therapeutics. The development of novel therapeutic strategies using multimodal nanotechnology to enhance specificity, increase bioavailability and biostability of therapeutics with favorable outcomes is critical. Gated vectors that respond to endogenous or exogenous stimuli, and promote targeted tumor delivery without prematurely cargo loss are ideal. Mesoporous silica nanoparticles (MSNs) are effective delivery systems for a variety of therapeutic agents in cancer therapy. MSNs possess a rigid framework and large surface area that can incorporate supramolecular constructs and varying metal species that allow for stimuli-responsive controlled release functions. Its high interior loading capacity can incorporate combination drug/gene therapeutic agents, conferring increased bioavailability and biostability of the therapeutic cargo. Significant advances in the engineering of MSNs structural and physiochemical characteristics have since seen the development of nanodevices with promising in vivo potential. In this review, current trends of multimodal MSNs being developed and their use in stimuli-responsive passive and active targeting in cancer therapy will be discussed, focusing on light, redox, pH, and temperature stimuli.


2021 ◽  
Vol 9 (1) ◽  
pp. 38-50
Author(s):  
Hien Phan ◽  
Vincenzo Taresco ◽  
Jacques Penelle ◽  
Benoit Couturaud

Stimuli-responsive amphiphilic block copolymers obtained by PISA have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, redox agents, light or temperature.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 355
Author(s):  
Jana K. Alwattar ◽  
Amina T. Mneimneh ◽  
Kawthar K. Abla ◽  
Mohammed M. Mehanna ◽  
Ahmed N. Allam

The epoch of nanotechnology has authorized novel investigation strategies in the area of drug delivery. Liposomes are attractive biomimetic nanocarriers characterized by their biocompatibility, high loading capacity, and their ability to reduce encapsulated drug toxicity. Nevertheless, various limitations including physical instability, lack of site specificity, and low targeting abilities have impeded the use of solo liposomes. Metal nanocarriers are emerging moieties that can enhance the therapeutic activity of many drugs with improved release and targeted potential, yet numerous barriers, such as colloidal instability, cellular toxicity, and poor cellular uptake, restrain their applicability in vivo. The empire of nanohybrid systems has shelled to overcome these curbs and to combine the criteria of liposomes and metal nanocarriers for successful theranostic delivery. Metallic moieties can be embedded or functionalized on the liposomal systems. The current review sheds light on different liposomal-metal nanohybrid systems that were designed as cellular bearers for therapeutic agents, delivering them to their targeted terminus to combat one of the most widely recognized diseases, cancer.


2017 ◽  
Vol 5 (36) ◽  
pp. 7622-7631 ◽  
Author(s):  
Huaiying Zhang ◽  
Zeng Yi ◽  
Zhe Sun ◽  
Xiaomin Ma ◽  
Xudong Li

Simply-prepared nanoparticles of tea polyphenols are biocompatible, stimuli-responsive carriers for therapeutic agents, resulting in enhanced anticancer efficacy.


2020 ◽  
Author(s):  
Anna Kataki-Anastasakou ◽  
Jonathan C. Axtell ◽  
Selena Hernandez ◽  
RafalM. Dziedzic ◽  
Gary J. Balaich ◽  
...  

High affinity guest have been reported for the macrocyclic host cucurbit[7]uril (CB[7]), enabling widespread applications, but preventing CB[7] materials from being returned to their guest-free state for reuse. Here we present polyhedral boron clusters (carboranes) as strongly-binding, yet easily removable, guests for CB[7]. Aided by a Pd-catalyzed coupling of an azide anion, we prepared boron-functionalized 9<i>-</i>amino and 9-ammonium modified <i>ortho-</i>carboranes that bind to CB[7] with a <i>K<sub>a</sub></i>=10<sup>10</sup> M<sup>-1</sup>. Upon treatment with base, the <i>ortho</i>-carboranes<i> </i>readily undergo deboronation to yield anionic <i>nido</i>-carborane, a poor guest of CB[7], facilitating recovery of guest-free CB[7]. We showcase the utility of the modified <i>ortho</i>-carborane guest by recycling a CB[7]-functionalized resin. With this report, we introduce stimuli-responsive decomplexation as an additional consideration in the design of high affinity host-guest complexes.


2019 ◽  
Vol 296 ◽  
pp. 93-106 ◽  
Author(s):  
Ying Qu ◽  
Bingyang Chu ◽  
Xiawei Wei ◽  
Minyi Lei ◽  
Danrong Hu ◽  
...  

2020 ◽  
Vol 41 (24) ◽  
pp. 2000441
Author(s):  
Yue Zhao ◽  
Zuhao Li ◽  
Qiuju Li ◽  
Longfei Yang ◽  
Hou Liu ◽  
...  

Blood ◽  
2018 ◽  
Vol 131 (20) ◽  
pp. 2205-2214 ◽  
Author(s):  
Richard S. Blumberg ◽  
David Lillicrap ◽  

Abstract Hemophilia, or inherited genetic deficiencies in coagulation factors, results in uncontrolled bleeding requiring replacement therapy with recombinant proteins given preventively or on demand. However, a major problem with these approaches is the potential for development of immune responses to the administered proteins due to the underlying genetic deficiency of the factor(s) throughout life. As such, there is great interest in developing strategies that avoid immunogenicity and induce immune tolerance. Recently, recombinant factor VIII (rFVIII) and rFIX fused to the crystallizable fragment (Fc) domain of immunoglobulin G (IgG) have been developed as therapeutic agents for hemophilia A and B, respectively. Although it is well known that the possession of an Fc domain confers IgG’s longer-lasting circulating half-life, it is not generally appreciated that the Fc domain also confers immunoregulatory properties that are associated with the induction of tolerance. Here, we review some of the latest advances in our understanding of the tolerogenic abilities of IgG Fc and the impact of Fc-fusion proteins of rFVIII on the treatment of hemophilia.


Sign in / Sign up

Export Citation Format

Share Document