scholarly journals Antigen removal process preserves function of small diameter venous valved conduits, whereas SDS-decellularization results in significant valvular insufficiency

2020 ◽  
Vol 107 ◽  
pp. 115-128
Author(s):  
Manuela Lopera Higuita ◽  
Leigh G. Griffiths
Author(s):  
T. G. Gregory

A nondestructive replica technique permitting complete inspection of bore surfaces having an inside diameter from 0.050 inch to 0.500 inch is described. Replicas are thermally formed on the outside surface of plastic tubing inflated in the bore of the sample being studied. This technique provides a new medium for inspection of bores that are too small or otherwise beyond the operating limits of conventional inspection methods.Bore replicas may be prepared by sliding a length of plastic tubing completely through the bore to be studied as shown in Figure 1. Polyvinyl chloride tubing suitable for this replica process is commercially available in sizes from 0.037- to 0.500-inch diameter. A tube size slightly smaller than the bore to be replicated should be used to facilitate insertion of the plastic replica blank into the bore.


Author(s):  
Asish C. Nag ◽  
Lee D. Peachey

Cat extraocular muscles consist of two regions: orbital, and global. The orbital region contains predominantly small diameter fibers, while the global region contains a variety of fibers of different diameters. The differences in ultrastructural features among these muscle fibers indicate that the extraocular muscles of cats contain at least five structurally distinguishable types of fibers.Superior rectus muscles were studied by light and electron microscopy, mapping the distribution of each fiber type with its distinctive features. A mixture of 4% paraformaldehyde and 4% glutaraldehyde was perfused through the carotid arteries of anesthetized adult cats and applied locally to exposed superior rectus muscles during the perfusion.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Author(s):  
S.F. Corcoran

Over the past decade secondary ion mass spectrometry (SIMS) has played an increasingly important role in the characterization of electronic materials and devices. The ability of SIMS to provide part per million detection sensitivity for most elements while maintaining excellent depth resolution has made this technique indispensable in the semiconductor industry. Today SIMS is used extensively in the characterization of dopant profiles, thin film analysis, and trace analysis in bulk materials. The SIMS technique also lends itself to 2-D and 3-D imaging via either the use of stigmatic ion optics or small diameter primary beams.By far the most common application of SIMS is the determination of the depth distribution of dopants (B, As, P) intentionally introduced into semiconductor materials via ion implantation or epitaxial growth. Such measurements are critical since the dopant concentration and depth distribution can seriously affect the performance of a semiconductor device. In a typical depth profile analysis, keV ion sputtering is used to remove successive layers the sample.


Author(s):  
Morten H. Nielsen ◽  
Lone Bastholm

During the last 5 years the diameter of the gold probes used for immuno-cytochemical staining at the electron microscopical (EM) level has been decreased. The advantage of small diameter gold probes is an overall increased labelling density. The disadvantage is a lower detectability due to the low electron density of smaller gold particles consequently an inconvenient high primary magnification needed for EM examination. Since 1 nm gold particles are barely visible by conventional EM examination the need for enlargement by silverenhancement of the gold particles has increased.In the present study of ultrathin cryosectioned material the results of immunostaining using 5 nm gold conjugated antibody and 1 nm gold conjugated antibodies are compared after silverenhancement of the 1 nm gold particles.Slices of freshly isolated mouse pituitary gland were immersion fixed for 20 min in 2 % glutaraldehyde /2 % paraformaldehyde. Blocks cryoprotected with 2.3 M sucrose were frozen in liquid nitrogen and ultra-cryosectioned on a RMC cryoultra-microtome.


2018 ◽  
Vol 56 (01) ◽  
pp. E2-E89
Author(s):  
M Smits ◽  
C Fauvelle ◽  
T Baumert ◽  
C Neumann-Haefelin ◽  
R Thimme ◽  
...  

1983 ◽  
Vol 50 (04) ◽  
pp. 881-884 ◽  
Author(s):  
J T Christenson ◽  
P Qvarfordt ◽  
S-E Strand ◽  
D Arvidsson ◽  
T Sjöberg ◽  
...  

SummaryThrombogenicity of graft material is involved in early graft failure in small diameter grafts. The frequently seen postoperative swelling of the leg after distal revascularization may cause an increased intramuscular pressure and early graft failure.Pairs of 4 mm polytetrafluoroethylene (PTFE) grafts were implanted. Autologous platelets were labeled with mIn-oxine. Platelet adhesiveness onto the grafts were analyzed from gamma camera images. Intramuscular pressures were measured with wick technique. Blood flow was measured. One graft served as control the other as test graft. Ninety minutes after declamping the i. m. pressure was increased in the test-leg to 30 mmHg, and later to 60 mmHg.In the control-graft platelet uptake increased to a maximum 60 min after declamping. Blood flow and i.m. pressure remained uneffected. The test-grafts were initially similar but when i.m. pressure was increased to 30 mmHg activity in the grafts increased significantly. Blood flow decreased with 12% of initial flow. When i. m. pressure was raised to 60 mmHg platelet uptake continued to increase.An increased intramuscular pressure of 30 mmHg or more significantly increase the amount of platelets adhering onto PTFE grafts, emphasizing the need for measuring intramuscular pressures after lower limb vascular revascularizations.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document