A large-scale geographical coverage survey reveals a pervasive impact of agricultural practices on plankton primary producers

2022 ◽  
Vol 325 ◽  
pp. 107740
Author(s):  
Manuel Castro Berman ◽  
Inés O’ Farrell ◽  
Paula Huber ◽  
Damián Marino ◽  
Horacio Zagarese
1996 ◽  
Vol 33 (4-5) ◽  
pp. 39-44
Author(s):  
J. Holas ◽  
M. Konvicková

Potential environmental impacts as a result of large-scale farming system in the Czech Republic have created a great deal of concern in recent years. This concern has led to several studies to identify the role of new regulations, directives and other legislative issues in the field of water pollution control. The set of legislative tools related to watershed management policy to promote better agricultural practices is shortly reviewed. The paper emphasises the running water law system amendment with respect to European community water quality regulations.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Anirban Nath ◽  
Sourav Samanta ◽  
Saon Banerjee ◽  
Anamitra Anurag Danda ◽  
Sugata Hazra

AbstractThe paper through a critical appraisal of the agricultural practices in the Indian Sundarban deltaic region explores the tripartite problems of arsenic biomagnification, salinity of arable lands and ingress of agrochemical pollutants into the freshwater resources, which endanger the health, livelihood and food security of the rural population inhabiting the delta. The threefold problem has rendered a severe blow to the agrarian economy consequently triggering large-scale outmigration of the rural population from the region. Although recent studies have addressed these issues separately, the inter-connectivity among these elements and their possible long-term impact upon sustainability in the Sundarbans are yet to be elucidated. In the current scenario, the study emphasizes that the depleting freshwater resources is at the heart of the threefold problems affecting the Sundarbans. Owing to the heavy siltation of the local river systems, freshwater resources from the local ravines have salinized beyond the point of being used for agricultural purposes. At the same time, increasing salinity levels resulting from fluctuation of pre- and post-monsoon rainfall, frequent cyclones and capillary movement of salinized groundwater (primarily during the Rabi season) have severely hampered the agricultural practices. Salinization of above groundwater reserves has forced the farmers toward utilization of groundwater, which are lifted using STWs, especially for rice and other cultivations in the Rabi season. The Holocene aquifers of the region retain toxic levels of arsenic which are lifted during the irrigation process and are deposited on to the agricultural fields, resulting in bioaccumulation of As in the food products resourced from the area. The compound effect of consuming arsenic-contaminated food and drinking water has resulted in severe health issues recorded among the local population in the delta. Furthermore, due to the sub-optimal conditions for sustaining agriculture under saline stress, farmers often opt for the cultivation of post-green revolution high-yielding varieties, which require additional inputs of nitrogen-based fertilizers, organophosphate herbicides and pesticides that are frequently washed away by runoff from the watershed into the low-lying catchment areas of the biosphere reserve. Such practices have endangered the vulnerable conditions of local flora and fauna. In the present situation, the study proposes mitigation strategies which necessitate the smart use of locally obtainable resources like water, adaptable cultivars and sustainable agronomic practices like organic farming. The study also suggests engaging of conventional plant breeding strategies such as “Evolutionary plant breeding” for obtaining cultivars adapted to the shifting ecological conditions of the delta in the long run.


Author(s):  
Hildegarde Vandenhove

The accident at the Fukushima Daiichi Nuclear Power Plant has raised questions about the accumulation of radionuclides in soils, the transfer in the foodchain and the possibility of continued restricted future land use. This paper summarizes what is generally understood about the application of agricultural countermeasures as a land management option to reduce the radionuclides transfer in the food chain and to facilitate the return of potentially affected soils to agricultural practices in areas impacted by a nuclear accident.


2021 ◽  
Author(s):  
Matthew Wolfe ◽  
Da Huo ◽  
Henry Ruiz-Guzman ◽  
Brody Teare ◽  
Tyler Adams ◽  
...  

Abstract AimsMany governments and companies have committed to moving to net-zero emissions by 2030 or 2050 to tackle climate change, which require the development of new carbon capture and sequestration/storage (CCS) techniques. A proposed method of sequestration is to deposit carbon in soils as plant matter including root mass and root exudates. Adding perennial traits such as rhizomes to crops as part of a sequestration strategy would result in annual crop regrowth from rhizome meristems rather than requiring replanting from seeds which would in turn encourage no-till agricultural practices. Integrating these traits into productive agriculture requires a belowground phenotyping method compatible with high throughput breeding and selection methods (i.e., is rapid, inexpensive, reliable, and non-invasive), however none currently exist. MethodsGround penetrating radar (GPR) is a non-invasive subsurface sensing technology that shows potential as a phenotyping technique. In this study, a prototype GPR antenna array was used to scan roots of the perennial sorghum hybrid, PSH09TX15. A-scan level time-domain analyses and B-scan level time/frequency analyses using the continuous wavelet transform were utilized to extract features of interest from the acquired radargrams. ResultsOf six A-scan diagnostic indices examined, the standard deviation of signal amplitude correlated most significantly with belowground biomass. Time frequency analysis using the continuous wavelet transform yielded high correlations of B-scan features with belowground biomass. ConclusionThese results demonstrate that continued refinement of GPR data analysis workflows should yield a highly applicable phenotyping tool for breeding efforts in environments where selection is otherwise impractical on a large scale.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 965 ◽  
Author(s):  
Rajesh Rai ◽  
Priya Shyamsundar ◽  
Mani Nepal ◽  
Laxmi Bhatta

Watershed management is critical for the sustainable supply of clean water to urban centers, particularly in areas of developing countries where large-scale infrastructure projects are costly to implement. In this paper, we discuss the potential for financing improvements in watershed services in the foothills of the Himalayas through Payments for Ecosystem Services. Through the use of a choice experiment to disentangle household preferences, we show that downstream water users are interested in improvements in water quality through source water protection. Households in Dharan municipality are willing to finance watershed management to the extent of USD 118,000 per year. These payments can be used to incentivize upstream households to decrease domestic livestock grazing, change agricultural practices and reduce open defecation to improve the drinking water quality and quantity in downstream areas. The estimated cost of these activities is less than $50,000 per year. Through discussions with local stakeholders, we propose a tri-partite institutional structure to facilitate transactions between downstream and upstream communities and to improve watershed services.


1988 ◽  
Vol 15 (3) ◽  
pp. 197-204 ◽  
Author(s):  
John L. Cloudsley-Thompson

Throughout their existence, civilized peoples have been turning their environment into desert. The causes of desertification are well known—overgrazing, the felling of trees for fuel, and bad agricultural practices. Their effects are apparent in disasters such as the Sahel drought and recent famines in Ethiopia, the Sudan, and elsewhere. The population explosion enhances the extent of the environmental degradation. More agricultural land is currently being lost through salinization and waterlogging than is being created by new irrigation schemes, but this is only part of a problem that faces all tropical third-world countries and for which multinational organizations and the affluent nations of temperate regions are, regrettably and often unknowingly, largely responsible.Because the poorer countries receive, for their agricultural products, cash of which the market value does not take into account the cost to the environment of overexploiting the land, they are apparently doomed to a vicious circle of increasing poverty, deprivation, and famine. Yet it is not beyond the abilities of civilization to devise a viable scheme, based upon sound ecological principles, by which the quality of life of desert peoples could be immeasurably improved. Instead of trying to change the land to make it conform to present economic and political expectations, development should be adapted to exploit the potentialities of the environment as it exists. Such a scheme, profiting from the diversity of microenvironments that occur in desert regions, would encompass multiple land-use and the development of numerous small agricultural and other projects—rather than the large-scale schemes hitherto initiated in fragile environments, and which have so often led to large-scale disaster. By adopting it, the world would simultaneously be made both more stable and more productive for the benefit of all its inhabitants.


2019 ◽  
Vol 7 (2) ◽  
pp. 159-170
Author(s):  
Joachim B. Nachmansohn ◽  
Patricia Imas ◽  
Surinder K. Bansal

Agriculture is the backbone of the Indian economy, in spite of concerned efforts towards industrialization in the last three decades. Therefore, the soil quality and fertility are the major factors in crop production. Declining soil fertility is one of the primary factors that directly affect crop productivity, and fertilizer-use is a key factor in order to keep soil fertility and productivity. A major factor in declining soil fertility is potassium (K) depletion, especially on smallholder farms where fertilization decisions are not based on regular soil testing. Most of the smallholder soybean producers do not have access and investment capacity to soil testing services. Therefore, there is a need to create K fertilizer recommendations based on empirically verified knowledge at India-specific scale. Such large-scale studies, in local filed conditions, are currently lacking. In order to bridge this gap, and generate proven set of directly applicable recommendations, a large-scale plot trial was launched; the Potash for Life (PFL) project. The study evaluated the K response in soybean when fertilizing with potash on K depleted soils in local variable field conditions. The aim was to (1) evaluate the effect and response consistency of K application on soybean yield, (2) to demonstrate to farmers the increased yield and profitability from K-inclusive fertilization regimes for this crop and give recommendations for transient yield increase, and (3) to raise the awareness among smallholder farmers about the importance of K fertilization. A comprehensive experiment was carried out in Madhya Pradesh (M.P.) and Maharashtra. The methodology was straight-forward; two identical plots side by side, with the only difference that one of them was fertilized with additional potash. The results showed a significant yield increase response from the potash application; the average yield increase was 244 kg ha-1 or 26 % in M.P., and 105 kg ha-1 or 36 % in Maharashtra. This entailed an average additional net profit of ₹ 6,681 INR ha-1 and ₹ 2,544 INR ha-1, in M.P. and Maharashtra respectively. It was concluded that the soil status of plant available K is significantly lower than the plant demand for soybean production in the two states, Consequently, K fertilization is necessary in order to improve agricultural practices and optimizing yields. Ultimately, following recommendations given in this study would allow farmers to generate additional profit, which could further allow them to invest in fine-tuning fertilizer practices through the means of soil testing.


2021 ◽  
Author(s):  
Hanxiong Song ◽  
Changhui Peng ◽  
Kerou Zhang ◽  
Qiuan Zhu

Abstract. Nitrous oxide (N2O) emissions from croplands are one of the most important greenhouse gas sources, and it is difficult to simulate on a large scale. In order to simulate N2O emissions from global croplands, a new version of the process-based TRIPLEX-GHG model was developed by coupling the major agricultural activities. The coefficient of the NO3− consumption rate for denitrification (COEdNO3) was found to be the most sensitive parameter based on sensitivity analysis, and it was calibrated using field data from 39 observation sites across major croplands globally. The model performed well when simulating the magnitude of the daily N2O emissions and was able to capture the temporal patterns of the N2O emissions. The COEdNO3 ranged from 0.01 to 0.05, and the continental mean of the parameter was used for the model validation. The validation results indicate that the means of the measured daily N2O fluxes during the experiment periods are highly correlated with the modeled results (R2 = 0.87). Consequently, our model simulation results demonstrate that the new version of the TRIPLEX-GHG model can reliably simulate N2O emissions from various croplands at the global scale.


2020 ◽  
pp. 21-30
Author(s):  
Agbakoba Augustine Azubuike ◽  
Ema Idongesit Asuquo ◽  
Agbakoba Victor Chike

The recent push for precision agriculture has resulted in the deployment of highly sophisticated Information and Communication Technology (ICT) gadgets in various agricultural practices and methods. The introduction of ICT devices has been linked to significant improvements in agricultural activities. These devices have been shown to enhance the optimal management of critical resources such as water, soil, crop and arable land. Again, ICT devices are increasingly attractive due to their flexibility, ease of operation, compactness and superior computational capabilities. Especially when in comparison to the mundane methods previously used by most small- and large-scale farmers. For instance, ICT devices such as Unmanned Aerial Vehicles (UAVs) also referred to as drones, are increasingly being deployed for remote sensing missions where they capture high quality spatial resolution images. The data generated by these UAVs provide much needed information that aids in early spotting of soil degradation, crop conditions, severity of weed infestation and overall monitoring of crop yield variability. This enables farmers to acquire on-the-spot information that will enhance decision making within a short period of time, which will in turn contribute to reduction in running cost and potentially increase yield. It is safe to say that full potentials of drones are yet to be fully utilized in the Nigerian agricultural sector. This is due to several factors; most notably are the numerous challenges that accompany the introduction and adoption of much new technologies. Other factors; include high cost of technology, inadequate or total lack of skilled labour, poor awareness and low-farmer literacy. Therefore, this review work highlights the global progress recorded as a result of the recent application of drones for soil management and efficient crop production. Furthermore, key discussions surrounding the application of drones for precision agriculture and the possible drawbacks facing the deployment of such technology in Nigeria has been covered in this work.


Sign in / Sign up

Export Citation Format

Share Document