The efficient use of radiation, water, and nitrogen uptake by low-nitrogen-tolerant broomcorn millet (Panicum miliaceum L.) increased grain yield in the Loess Plateau, China

2021 ◽  
Vol 308-309 ◽  
pp. 108616
Author(s):  
Chunjuan Liu ◽  
Xiangwei Gong ◽  
Ke Dang ◽  
Panpan Zhang ◽  
Qinghua Yang ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1094
Author(s):  
Kai Yue ◽  
Lingling Li ◽  
Junhong Xie ◽  
Setor Kwami Fudjoe ◽  
Renzhi Zhang ◽  
...  

Nitrogen (N) is the most limiting nutrient for maize, and appropriate N fertilization can promote maize growth and yield. The effect of N fertilizer rates and timings on morphology, antioxidant enzymes, and grain yield of maize (Zea mays L.) in the Loess Plateau of China was evaluated. The four N levels, i.e., 0 (N0), 100 (N1), 200 (N2), and 300 (N3) kg ha−1, were applied at two timings (T1, one-third N at sowing and two-thirds at the six-leaf stage of maize; T2, one-third applied at sowing, six-leaf stage, and eleven-leaf stage of maize). The results show that N2 and N3 significantly increased the plant height, stem and leaf dry weight, and leaf area index of maize compared with a non-N-fertilized control (N0). The net photosynthetic rate, transpiration rate, stomatal conductance, and leaf chlorophyll contents were lower, while the intercellular carbon dioxide concentration was higher for non-fertilized plants compared to fertilized plants. The activities of peroxidase (POD) and superoxide dismutase (SOD) increased with N rate, but the difference between 200 and 300 kg ha−1 was not significant; further, the isozyme bands of POD and SOD also changed with their activities. Compared with a non-N-fertilized control, N2 and N3 significantly increased grain yield by 2.76- and 3.11-fold in 2018, 2.74- and 2.80-fold in 2019, and 2.71- and 2.89-fold in 2020, and there was no significant difference between N2 and N3. N application timing only affected yield in 2018. In conclusion, 200 kg N ha−1 application increased yield through optimizing the antioxidant enzyme system, increasing photosynthetic capacity, and promoting dry matter accumulation. Further research is necessary to evaluate the response of more cultivars under more seasons to validate the results obtained.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 835
Author(s):  
Yue Xu ◽  
Minxuan Liu ◽  
Chunxiang Li ◽  
Fengjie Sun ◽  
Ping Lu ◽  
...  

Cultivated broomcorn millet (Panicum miliaceum L.), one of the most ancient crops, has long been an important staple food in the semiarid regions of Eurasia. Weedy broomcorn millet (Panicum ruderale (Kitag.) Chang comb. Nov.), the companion weed of cultivated broomcorn millet, is also widely distributed throughout Eurasia and can produce fertile offspring by crossing with cultivated broomcorn millet. The evolutionary and genetic relationships between weedy and cultivated broomcorn millets, and the explicit domestication areas and detailed spread routes of this cereal are still unclear. The genetic diversity and population structure of 200 accessions of weedy and cultivated broomcorn millets were explored to elucidate the genetic relationship between weedy and cultivated broomcorn millets, and to trace the explicit domestication areas and detailed spread routes of broomcorn millets by using 23 simple sequence repeats (SSR) markers. Our results show that the weedy populations in China may harbor the ancestral variations that gave rise to the domesticated broomcorn millet. The population structure pattern observed in the wild and domesticated broomcorn millets is consistent with the hypothesis that there may be at least two independent domestication areas in China for the cultivated broomcorn millet, the Loess Plateau and the Northeast China, with both following the westward spread routes. These two westward spread routes of cultivated broomcorn millet coincide exactly with the prehistoric Oasis Route and Steppe Route, respectively.


Sign in / Sign up

Export Citation Format

Share Document