Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang

2021 ◽  
Vol 245 ◽  
pp. 106651
Author(s):  
Songrui Ning ◽  
Beibei Zhou ◽  
Jianchu Shi ◽  
Quanjiu Wang
Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 293
Author(s):  
Jifeng Zhang ◽  
Zhenhua Wang ◽  
Bihang Fan ◽  
Yusheng Hou ◽  
Yunqing Dou ◽  
...  

Xinjiang is one of the most prolific tomato-planting areas in China. Here, we carried out a two-year (2017–2018) field experiment in Xinjiang to study the effects of different nitrogen (N) application rates on the spatial distribution of water and salt in the root zone, as well as their impacts on the yield and quality of tomatoes under mulched drip irrigation. The ideal ranges of N application rates for tomato yield and quality were examined under different salinity levels. Results indicated that soil water content and salinity increased with soil depth. Soil water content was closely related to soil salinity but not to N. Among the tested application rates, tomato yield was highest under the medium-high N (225–300 kg/ha) and low salt (4 g/kg) treatment. Under the highest salt level (10 g/kg), the low nitrogen treatment (150 kg/ha) was better than the high N treatment (300 kg/ha) at boosting tomato yield. Moreover, we found that salinity had a stronger effect on tomato quality than N. Based on these results, we were able to recommend ideal ranges for N (155–201 kg/ha) and salt (3.56–5.59 g/kg) while both are present in the soil.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2095 ◽  
Author(s):  
Li ◽  
Chen ◽  
Jin ◽  
Wang ◽  
Du

Freshwater shortage is becoming one of the major limiting factors for the sustainable development of agriculture in arid and semi-arid areas of north China. A two-year field experiment about mulched drip irrigation on maize was conducted in Hetao Irrigation District with five irrigation water salinity levels (total dissolved solids; 1, 2, 3, 4, and 5 g·L−1). The effects of irrigation water salinity on maize emergence, growth, yield, grain quality, and soil salt were determined. The results indicated that with the soil matric potential of -20 kPa and irrigation quota for each application of 22.5 mm, the irrigation water salinity showed negative influence on maize emergence and maize morphological characteristics (plant height, leaf area index, stem diameter, and dry matter), as irrigation water salt concentrations exceeded 3 g·L−1. The water use efficiency decreased linearly with the irrigation water salinity raised from 1 g·L−1 to 5 g·L−1, while maize grain protein increased and starch content decreased with the increase of irrigation water salt contents. Additionally, both the vertical radius and horizontal radius of salt isoline by mulched drip irrigation reduced with the irrigation water salt concentrations, when the irrigation water salinity was above 3 g·L−1. Summarily, irrigation water salinity of 3 g·L−1 was recommended for maize mulched drip irrigation in this study.


2013 ◽  
Vol 405-408 ◽  
pp. 2273-2276
Author(s):  
Heng Jia Zhang ◽  
Jing Li

An experiment was conducted to determine the effect of mulched drip irrigation under water deficit on soil water content (SWC), stored soil water (SSW), daily water consumption (DWC) and ratio of water consumption in total water use (RWC) of potato in an arid area. Five water deficit treatments designed to subject potato to various levels of soil water deficit at different crop growth stages and a full irrigation control were established. The result indicated that the maximum SWC was at 20 cm depth in soil profile and that in 10 to 40 cm increment varied sharply during potato growing season. The SWC, SSW, DWC and RWC were significantly affected by mulched drip irrigation at water deficit regulation stages except at starch accumulation. Therefore, proper levels of soil water deficit regulated with mulched drip irrigation at proper plant growth stages could be used to regulate soil water status, stored soil water and crop water consumption effectively.


2011 ◽  
Vol 28 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Litan Su ◽  
Abudu Shalamu ◽  
Yu-dong SONG

2020 ◽  
Vol 69 (3) ◽  
pp. 448-459
Author(s):  
Anqi Zhang ◽  
Chunlian Zheng ◽  
Kejiang Li ◽  
Hongkai Dang ◽  
Caiyun Cao ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1225 ◽  
Author(s):  
Zilong Guan ◽  
Zhifeng Jia ◽  
Zhiqiang Zhao ◽  
Qiying You

Mulched drip irrigation has been widely used in agricultural planting in arid and semi-arid regions. The dynamics and distribution of soil salinity under mulched drip irrigation greatly affect crop growth and yield. However, there are still different views on the distribution and dynamics of soil salinity under long-term mulched drip irrigation due to complex factors (climate, groundwater, irrigation, and soil). Therefore, the soil salinity of newly reclaimed salt wasteland was monitored for 9 years (2008–2016), and the effects of soil water on soil salinity distribution under mulched drip irrigation have also been explored. The results indicated that the soil salinity decreased sharply in 3–4 years of implementation of mulched drip irrigation, and then began to fluctuate to different degrees and showed slight re-accumulation. During the growth period, soil salinity was relatively high at pre-sowing, and after a period of decline soil salinity tends to increase in the late harvest period. The vertical distribution of soil texture had a significant effect on the distribution of soil salinity. Salt accumulated near the soil layer transiting from coarse soil to fine soil. After a single irrigation, the soil water content in the 30–70 cm layer under the cotton plant undergoes a ‘high–low–high’ change pattern, and the soil salt firstly moved to the deep layer (below 70 cm), and then showed upward migration tendency with the weakening of irrigation water infiltration. The results may contribute to the scientific extension of mulched drip irrigation and the farmland management under long-term mulched drip irrigation.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1532
Author(s):  
Zeyi Wang ◽  
Hengjia Zhang ◽  
Yucai Wang ◽  
Chenli Zhou

Limited water resources and low water productivity limit the sustainable development of agriculture in northwest China. In this study, drip irrigation under plastic film was used to achieve an optimal water deficit irrigation (WDI) scheme for the cultivation of indigowoad root (Isatis tinctoria L.). Field water control experiments were conducted in 2016 and 2017. Evaluation of WDI schemes was carried out by considering five indices: water consumption, yield, water use efficiency (WUE), indigo, and (R,S)-goitrin. To enhance the reliability of results, the analytic hierarchy process (AHP) and entropy weight method (EWM) were adopted to calculate the combined weight of the evaluation index. Finally, an improved technique for order of preference by similarity to ideal solution (TOPSIS) that integrated AHP–EWM weights was used to construct a unified, comprehensive evaluation model of indigowoad root under mulched drip irrigation that would produce high yield while saving water. The evaluation results indicated that mild WD (specifically, the V1G1 treatment) was continuously exerted during the vegetative and fleshy root growth periods, which enhanced the WUE and improved the quality of indigowoad root to a certain extent without significantly reducing the yield. These results provide a scientific basis for irrigation of indigowoad in northwest China and other areas with a similar environment.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Feng Wang ◽  
Jun Xue ◽  
Ruizhi Xie ◽  
Bo Ming ◽  
Keru Wang ◽  
...  

Determining the water productivity of maize is of great significance for ensuring food security and coping with climate change. In 2018 and 2019, we conducted field trials in arid areas (Changji), semi-arid areas (Qitai) and semi-humid areas (Xinyuan). The hybrid XY335 was selected for the experiment, the planting density was 12.0 × 104 plants ha−1, and five irrigation amounts were set. The results showed that yield, biomass, and transpiration varied substantially and significantly between experimental sites, irrigation and years. Likewise, water use efficiency (WUE) for both biomass (WUEB) and yield (WUEY) were affected by these factors, including a significant interaction. Normalized water productivity (WP*) of maize increased significantly with an increase in irrigation. The WP* for film mulched drip irrigation maize was 37.81 g m−2 d−1; it was varied significantly between sites and irrigation or their interaction. We conclude that WP* differs from the conventional parameter for water productivity but is a useful parameter for assessing the attainable rate of film-mulched drip irrigation maize growth and yield in arid areas, semi-arid areas and semi-humid areas. The parametric AquaCrop model was not accurate in simulating soil water under film mulching. However, it was suitable for the prediction of canopy coverage (CC) for most irrigation treatments.


Sign in / Sign up

Export Citation Format

Share Document